Adaptive Estimation of Random-Effects Densities In Linear Mixed-Effects Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
- Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
- Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
- Gerda Claeskens & Jeffrey Hart, 2009. "Rejoinder on: Goodness-of-fit tests in mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 265-270, August.
- Ping Wu & Li Xing Zhu, 2010. "An Orthogonality‐Based Estimation of Moments for Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 253-263, June.
- F. Comte & C. Lacour, 2011. "Data‐driven density estimation in the presence of additive noise with unknown distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 601-627, September.
- Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
- Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
- Johannes, Jan & Schwarz, Maik, 2013. "Adaptive circular deconvolution by model selection under unknown error distribution," LIDAM Reprints ISBA 2013048, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
- Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
- Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
- Komárek, Arnost & Lesaffre, Emmanuel, 2008. "Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3441-3458, March.
- Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
- Gerda Claeskens & Jeffrey Hart, 2009. "Goodness-of-fit tests in mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 213-239, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
- Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
- Bao, Junshu & Hanson, Timothy E., 2016. "A mean-constrained finite mixture of normals model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 93-99.
- Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
- Gwennaëlle Mabon, 2014. "Adaptive Deconvolution on the Nonnegative Real Line," Working Papers 2014-40, Center for Research in Economics and Statistics.
- Christophe Chesneau & Fabienne Comte & Gwennaëlle Mabon & Fabien Navarro, 2014. "Estimation of Convolution In The Model with Noise," Working Papers 2014-39, Center for Research in Economics and Statistics.
- Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
- Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
- Fabienne Comte & Adeline Samson & Julien J Stirnemann, 2014. "Deconvolution Estimation of Onset of Pregnancy with Replicate Observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 325-345, June.
- Reza Drikvandi & Geert Verbeke & Geert Molenberghs, 2017. "Diagnosing misspecification of the random-effects distribution in mixed models," Biometrics, The International Biometric Society, vol. 73(1), pages 63-71, March.
- Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.
- Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
- Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022.
"Estimation of varying coefficient models with measurement error,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
- Hao Dong & Taisuke Otsu & Luke Taylor, 2019. "Estimation of Varying Coefficient Models with Measurement Error," Departmental Working Papers 1905, Southern Methodist University, Department of Economics.
- Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," LSE Research Online Documents on Economics 108147, London School of Economics and Political Science, LSE Library.
- Hao Dong & Taisuke Otsu & Luke Taylor, 2019. "Estimation of Varying Coefficient Models with Measurement Error," STICERD - Econometrics Paper Series 607, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Schwarz, Maik & Van Bellegem, Sébastien, 2010.
"Consistent density deconvolution under partially known error distribution,"
Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 236-241, February.
- Schwarz, Maik & Van Bellegem, Sébastien, 2009. "Consistent Density Deconvolution under Partially Known Error Distribution," IDEI Working Papers 632, Institut d'Économie Industrielle (IDEI), Toulouse.
- Schwarz, Maik & Van Bellegem, Sébastien, 2009. "Consistent Density Deconvolution under Partially Known Error Distribution," TSE Working Papers 09-097, Toulouse School of Economics (TSE).
- Peter Hall & Tapabrata Maiti, 2009. "Deconvolution methods for non‐parametric inference in two‐level mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 703-718, June.
- Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
- Manuel Arellano & Stéphane Bonhomme, 2012.
"Identifying Distributional Characteristics in Random Coefficients Panel Data Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
- Manuel Arellano & Stéphane Bonhomme, 2009. "Identifying distributional characteristics in random coefficients panel data models," CeMMAP working papers CWP22/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2009. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," Working Papers wp2009_0904, CEMFI.
- Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.
- Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
- Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010.
"Nonparametric Frontier Estimation from Noisy Data,"
IDEI Working Papers
625, Institut d'Économie Industrielle (IDEI), Toulouse.
- Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," TSE Working Papers 10-179, Toulouse School of Economics (TSE).
- SCHWARZ, Maik & VAN BELLEGEM, Sébastien & FLORENS, Jean - Pierre, 2010. "Nonparametric frontier estimation from noisy data," LIDAM Discussion Papers CORE 2010050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
More about this item
Keywords
Adaptive estimation. Nonparametric density estimation. Deconvolution. Linear mixed-e ects model. Random e ect density. Mean squared risk.;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2014-41. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.