IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v23y2005i4-2005p317-329n4.html
   My bibliography  Save this article

The heat equation given a time series of initial data subject to error

Author

Listed:
  • Hesse C. H.

Abstract

The Cauchy problem for the one-dimensional heat equation asks for solutions uf(x,t) of ∂u/∂t = ∂2u / ∂x2 on R × [1, ∞) with u(x, 1) = f(x) on R. Here we assume that the initial condition f(x), x ∊ R, and hence the solution uf is unknown but that at times tj, j = 1, 2, …, n, noisy measurements are available from which an estimator ~fn of the initial condition may be obtained. The paper studies the asymptotics (as t → ∞ and n → ∞) of uf(xt1/2, t)–u~fn(xt1/2, t) in mean integrated squared error.

Suggested Citation

  • Hesse C. H., 2005. "The heat equation given a time series of initial data subject to error," Statistics & Risk Modeling, De Gruyter, vol. 23(4), pages 317-329, April.
  • Handle: RePEc:bpj:strimo:v:23:y:2005:i:4/2005:p:317-329:n:4
    DOI: 10.1524/stnd.2005.23.4.317
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2005.23.4.317
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2005.23.4.317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    2. Rachdi, Mustapha & Sabre, Rachid, 2000. "Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 105-114, April.
    3. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    4. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
    5. Ming Yuan, 2003. "Deconvolving Multivariate Density from Random Field," Statistical Inference for Stochastic Processes, Springer, vol. 6(2), pages 135-153, May.
    6. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Inference for Integrated Volatility," Departmental Working Papers 200616, Rutgers University, Department of Economics.
    7. Comte, Fabienne & Kappus, Johanna, 2015. "Density deconvolution from repeated measurements without symmetry assumption on the errors," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 31-46.
    8. Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
    9. Gwennaëlle Mabon, 2017. "Adaptive Deconvolution on the Non-negative Real Line," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 707-740, September.
    10. Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
    11. Gwennaëlle Mabon, 2014. "Adaptive Deconvolution on the Nonnegative Real Line," Working Papers 2014-40, Center for Research in Economics and Statistics.
    12. Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.
    13. Shunpu Zhang & Rohana Karunamuni, 2000. "Boundary Bias Correction for Nonparametric Deconvolution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 612-629, December.
    14. Gwennaëlle Mabon, 2014. "Adaptive Estimation of Random-Effects Densities In Linear Mixed-Effects Model," Working Papers 2014-41, Center for Research in Economics and Statistics.
    15. Barbara Wieczorek, 2010. "On optimal estimation of the mode in nonparametric deconvolution problems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 65-80.
    16. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    17. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    18. Christian Hesse, 1995. "Deconvolving a density from contaminated dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 645-663, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:23:y:2005:i:4/2005:p:317-329:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.