IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-575.html
   My bibliography  Save this paper

The Influence of Additive Outliers on the Performance of Information Criteria to Detect Nonlinearity

Author

Listed:
  • Rinke, Saskia

Abstract

In this paper the performance of information criteria and a test against SETAR nonlinearity for outlier contaminated time series are investigated. Additive outliers can seriously influence the properties of the underlying time series and hence of linearity tests, resulting in spurious test decisions of nonlinearity. Using simulation studies, the performance of the information criteria SIC and WIC as an alternative to linearity tests are assessed in time series with different degrees of persistence and different outlier magnitudes. For uncontaminated series and a small sample size the performance of SIC and WIC is similar to the performance of the linearity test at the $5\%$ and $10\%$ significance level, respectively. For an increasing number of observations the size of SIC and WIC tends to zero. In contaminated series the size of the test and of the information criteria increases with the outlier magnitude and the degree of persistence. SIC and WIC clearly outperform the test in larger samples and larger outlier magnitudes. The power of the test and of the information criteria depends on the sample size and on the difference between the regimes. The more distinct the regimes and the larger the sample, the higher is the power. Additive outliers decrease the power in distinct regimes in small samples and in intermediate regimes in large samples, but increase the power in similar regimes. Due to their higher robustness in terms of size, information criteria are a valuable alternative to linearity tests in outlier contaminated time series.

Suggested Citation

  • Rinke, Saskia, 2016. "The Influence of Additive Outliers on the Performance of Information Criteria to Detect Nonlinearity," Hannover Economic Papers (HEP) dp-575, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-575
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-575.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    2. repec:bla:jecsur:v:13:y:1999:i:5:p:551-76 is not listed on IDEAS
    3. Bruce Hansen, 1999. "Testing for Linearity," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 551-576, December.
    4. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
    5. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    6. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    7. Rinke Saskia & Sibbertsen Philipp, 2016. "Information criteria for nonlinear time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 325-341, June.
    8. Ahmad Yamin & Donayre Luiggi, 2016. "Outliers and persistence in threshold autoregressive processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 37-56, February.
    9. Yamin Ahmad & Luiggi Donayre, 2014. "Outliers and Persistence in Threshold Autoregressive Processes: A Puzzle?," Working Papers 14-02, UW-Whitewater, Department of Economics.
    10. George Kapetanios, 2001. "Model Selection in Threshold Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 733-754, November.
    11. Wu, Tiee-Jian & Sepulveda, Alfred, 1998. "The weighted average information criterion for order selection in time series and regression models," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 1-10, July.
    12. Hansen,B.E., 1999. "Testing for linearity," Working papers 7, Wisconsin Madison - Social Systems.
    13. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    14. McQuarrie, Allan & Shumway, Robert & Tsai, Chih-Ling, 1997. "The model selection criterion AICu," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 285-292, June.
    15. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo & Nicola Spagnolo, 2009. "Selecting nonlinear time series models using information criteria," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 369-394, July.
    16. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rinke Saskia & Sibbertsen Philipp, 2016. "Information criteria for nonlinear time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 325-341, June.
    2. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    3. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    4. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    5. Shahbaba Babak, 2009. "Discovering Hidden Structures Using Mixture Models: Application to Nonlinear Time Series Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-21, May.
    6. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    7. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    8. Pitarakis, J., 2004. "Model selection uncertainty and detection of threshold effects," Discussion Paper Series In Economics And Econometrics 0409, Economics Division, School of Social Sciences, University of Southampton.
    9. Donayre, Luiggi, 2022. "On the behavior of Okun's law across business cycles," Economic Modelling, Elsevier, vol. 112(C).
    10. Hirsch, Tristan & Rinke, Saskia, 2017. "Changes in Persistence in Outlier Contaminated Time Series," Hannover Economic Papers (HEP) dp-583, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Camilo Alberto Cárdenas-Hurtado & Aaron Levi Garavito-Acosta & Jorge Hernán Toro-Córdoba, 2018. "Asymmetric Effects of Terms of Trade Shocks on Tradable and Non-tradable Investment Rates: The Colombian Case," Borradores de Economia 1043, Banco de la Republica de Colombia.
    12. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    13. Kulaksizoglu, Tamer & Kulaksizoglu, Sebnem, 2009. "The U.S. Excess Money Growth and Inflation Relation in the Long-Run: A Nonlinear Analysis," MPRA Paper 23780, University Library of Munich, Germany.
    14. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    15. Rehim Kılıç, 2016. "Tests for Linearity in Star Models: Supwald and Lm-Type Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 660-674, September.
    16. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    17. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2010. "Regime specific predictability in predictive regressions," Discussion Paper Series In Economics And Econometrics 0916, Economics Division, School of Social Sciences, University of Southampton.
    18. Mehdi Hajamini & Mohammad Ali Falahi, 2014. "The nonlinear impact of government consumption expenditure on economic growth: Evidence from low and low-middle income countries," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-15, December.
    19. Birgit Strikholm & Timo Teräsvirta, 2006. "A sequential procedure for determining the number of regimes in a threshold autoregressive model," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 472-491, November.
    20. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.

    More about this item

    Keywords

    Additive Outliers; Nonlinear Time Series; Information Criteria; Linearity Test; Monte Carlo;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Heidrich, Christian (email available below). General contact details of provider: https://edirc.repec.org/data/fwhande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.