IDEAS home Printed from https://ideas.repec.org/a/sae/urbstu/v44y2007i2p339-355.html
   My bibliography  Save this article

What Parameters Influence the Spatial Variations in CO2 Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2 Emissions

Author

Listed:
  • Diana Reckien

    (Potsdam Institute for Climate Impact Research, PO 601203, reckien@pik-potsdam.de)

  • Maren Ewald

    (Seeheim-Jugenheim, Germany, maren. ewald@web.de)

  • Ottmar Edenhofer

    (Potsdam Institute for Climate Impact Research, PO 601203, edenhofer@pik potsdam.de)

  • Matthias K. B. Liideke

    (Potsdam Institute for Climate Impact Research, PO 601203, luedeke@ pik-potsdam.de)

Abstract

The aim of this paper is to find major influencing factors of CO 2 emissions from road traffic in urban areas. The approach of the study involved a statistical analysis on the basis of the formerly 23 urban districts of the German capital of Berlin. Correlation and regression analyses of empirical data from the settlement structure, the traffic structure and income have found that the number of jobs per district and the share of the well-off population can best describe the CO 2 emissions from traffic in Berlin. Also the number of residents, the total built area, the number of cars and the amount of traffic area are positively related to the dependent variable. Therefore, the possibilities to reduce CO 2 emissions from road traffic for urban planners seem limited: a restriction of space dedicated to traffic and a change of transport means for commuting represent leverage points, according to the analysis. The other significant indicators are less able to be influenced by local and regional decision-makers-an alteration in the means of mobility to less CO 2 emitting alternatives is needed if CO 2 emissions from road traffic are extensively to be decreased.

Suggested Citation

  • Diana Reckien & Maren Ewald & Ottmar Edenhofer & Matthias K. B. Liideke, 2007. "What Parameters Influence the Spatial Variations in CO2 Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2 Emissions," Urban Studies, Urban Studies Journal Limited, vol. 44(2), pages 339-355, February.
  • Handle: RePEc:sae:urbstu:v:44:y:2007:i:2:p:339-355
    DOI: 10.1080/00420980601136588
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1080/00420980601136588
    Download Restriction: no

    File URL: https://libkey.io/10.1080/00420980601136588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schafer, Andreas & Victor, David G., 1999. "Global passenger travel: implications for carbon dioxide emissions," Energy, Elsevier, vol. 24(8), pages 657-679.
    2. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    3. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    4. Schafer, Andreas, 1998. "The global demand for motorized mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 455-477, August.
    5. Jutta Kloas & Hartmut Kuhfeld, 2003. "Entfernungspauschale: Bezieher hoher Einkommen begünstigt: aktuelle Ergebnisse zum Verkehrsverhalten privater Haushalte," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 70(42), pages 623-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boeing, Geoff & Pilgram, Clemens & Lu, Yougeng, 2024. "Urban Street Network Design and Transport-Related Greenhouse Gas Emissions around the World," SocArXiv r32vj, Center for Open Science.
    2. Diana Reckien & Johannes Flacke & Marta Olazabal & Oliver Heidrich, 2015. "The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    3. Louafi Bouzouina & Bernard Quetelard & Florence Toilier, 2013. "Émissions de CO2 liées à la mobilité domicile-travail : une double lecture par le lieu de résidence et le lieu de travail des actifs à Lyon et à Lille," Post-Print halshs-01086008, HAL.
    4. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    5. Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
    6. Muhammad Shafique & Anam Azam & Muhammad Rafiq & Xiaowei Luo, 2020. "Evaluating the Relationship between Freight Transport, Economic Prosperity, Urbanization, and CO 2 Emissions: Evidence from Hong Kong, Singapore, and South Korea," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    7. Cheol Hee Son & Jong In Baek & Yong Un Ban, 2018. "Structural Impact Relationships Between Urban Development Intensity Characteristics and Carbon Dioxide Emissions in Korea," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    8. Mediha Burcu Silaydin Aydin & Emine Duygu Kahraman, 2022. "Mitigation or adaptation, the determination of which strategy should be given priority for urban spatial development: the case study of central cities in Turkey," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-23, February.
    9. Gordon Waitt & Theresa Harada, 2012. "Driving, Cities and Changing Climates," Urban Studies, Urban Studies Journal Limited, vol. 49(15), pages 3307-3325, November.
    10. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    11. Shreyas Pradhan & Takehito Ujihara & Seiji Hashimoto, 2023. "The Relationship between the Evaluation of Public Transport Services and Travel-Based CO 2 Emissions from Private Transport Modes in Regional and Metropolitan Areas in Japan," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    12. Yi Chen & Yinrong Chen & Kun Chen & Min Liu, 2023. "Research Progress and Hotspot Analysis of Residential Carbon Emissions Based on CiteSpace Software," IJERPH, MDPI, vol. 20(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    2. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    3. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    4. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    5. Van Ommeren, Jos & Rietveld, Piet, 2005. "The commuting time paradox," Journal of Urban Economics, Elsevier, vol. 58(3), pages 437-454, November.
    6. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    7. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
    8. Longden, Thomas, 2014. "Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles," Energy Policy, Elsevier, vol. 72(C), pages 219-234.
    9. Singh, Sanjay Kumar, 2006. "Future mobility in India: Implications for energy demand and CO2 emission," Transport Policy, Elsevier, vol. 13(5), pages 398-412, September.
    10. Lyons, Glenn & Urry, John, 2005. "Travel time use in the information age," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 257-276.
    11. Vincent Viguié, 2015. "Cross-commuting and housing prices in a polycentric modeling of cities," Policy Papers 2015.03, FAERE - French Association of Environmental and Resource Economists.
    12. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    13. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    14. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    15. Karplus, Valerie J. & Paltsev, Sergey & Babiker, Mustafa & Reilly, John M., 2013. "Applying engineering and fleet detail to represent passenger vehicle transport in a computable general equilibrium model," Economic Modelling, Elsevier, vol. 30(C), pages 295-305.
    16. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    17. Takayuki Takeshita, 2011. "Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050," IJERPH, MDPI, vol. 8(7), pages 1-31, July.
    18. Carpenter, Rachel A., 2010. "Sacramento’s Fix I-5 Project: Impact on Bus Transit Ridership," Institute of Transportation Studies, Working Paper Series qt8mq0g9gw, Institute of Transportation Studies, UC Davis.
    19. Karplus, Valerie J. & Paltsev, Sergey & Reilly, John M., 2010. "Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 620-641, October.
    20. Jha, Amit Prakash & Singh, Sanjay Kumar, 2022. "Future mobility in India from a changing energy mix perspective," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 706-724.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:urbstu:v:44:y:2007:i:2:p:339-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.gla.ac.uk/departments/urbanstudiesjournal .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.