IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v91y2016icp352-361.html
   My bibliography  Save this article

City density and CO2 efficiency

Author

Listed:
  • Gudipudi, Ramana
  • Fluschnik, Till
  • Ros, Anselmo García Cantú
  • Walther, Carsten
  • Kropp, Jürgen P.

Abstract

Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl.

Suggested Citation

  • Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
  • Handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:352-361
    DOI: 10.1016/j.enpol.2016.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516300167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    2. Kenworthy, Jeffrey R. & Laube, Felix B., 1999. "Patterns of automobile dependence in cities: an international overview of key physical and economic dimensions with some implications for urban policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 691-723.
    3. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    4. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    5. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    6. Yunjing Wang & Yoshitsugu Hayashi & Jin Chen & Qiang Li, 2014. "Changing Urban Form and Transport CO 2 Emissions: An Empirical Analysis of Beijing, China," Sustainability, MDPI, vol. 6(7), pages 1-22, July.
    7. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    8. Diana Reckien & Maren Ewald & Ottmar Edenhofer & Matthias K. B. Liideke, 2007. "What Parameters Influence the Spatial Variations in CO2 Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2 Emissions," Urban Studies, Urban Studies Journal Limited, vol. 44(2), pages 339-355, February.
    9. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Mihkelson & Hadi Arbabi & Stephen Hincks & Danielle Densley Tingley, 2024. "Built‐environment stocks in the context of a master‐planned city: A case study of Chandigarh, India," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 573-588, June.
    2. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    3. Yao Xu & Liang Sun & Bo Wang & Shanmin Ding & Xichen Ge & Shuangrong Cai, 2023. "Research on the Impact of Carbon Emissions and Spatial Form of Town Construction Land: A Study of Macheng, China," Land, MDPI, vol. 12(7), pages 1-23, July.
    4. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    5. Yao, Yongling & Pan, Haozhi & Cui, Xiaoyu & Wang, Zhen, 2022. "Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators," Land Use Policy, Elsevier, vol. 115(C).
    6. Borck, Rainald & Schrauth, Philipp, 2021. "Population density and urban air quality," Regional Science and Urban Economics, Elsevier, vol. 86(C).
    7. Peng Du & Antony Wood & Nicole Ditchman & Brent Stephens, 2017. "Life Satisfaction of Downtown High-Rise vs. Suburban Low-Rise Living: A Chicago Case Study," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    8. Peña, Guillermo & Puente-Ajovín, Miguel & Ramos, Arturo & Sanz-Gracia, Fernando, 2022. "Log-growth rates of CO2: An empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    9. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Wen, Shiyan & Lin, Boqiang & Zhou, Yicheng, 2021. "Does financial structure promote energy conservation and emission reduction? Evidence from China," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 755-766.
    11. Guo, Qingbin & Wang, Yong & Dong, Xiaobin, 2022. "Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China," Applied Energy, Elsevier, vol. 313(C).
    12. Huang, Cheng & Han, Ji & Chen, Wei-Qiang, 2017. "Changing patterns and determinants of infrastructures’ material stocks in Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 47-53.
    13. Mörtberg, Ulla & Goldenberg, Romain & Kalantari, Zahra & Kordas, Olga & Deal, Brian & Balfors, Berit & Cvetkovic, Vladimir, 2017. "Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region," Energy Policy, Elsevier, vol. 100(C), pages 338-349.
    14. Ke Luo & Shuo Chen & Shixi Cui & Yuantao Liao & Yu He & Chunshan Zhou & Shaojian Wang, 2023. "Examining the Overall and Heterogeneous Impacts of Urban Spatial Structure on Carbon Emissions: A Case Study of Guangdong Province, China," Land, MDPI, vol. 12(9), pages 1-19, September.
    15. George E. Halkos & Eleni-Christina Gkampoura, 2021. "Examining the Linkages among Carbon Dioxide Emissions, Electricity Production and Economic Growth in Different Income Levels," Energies, MDPI, vol. 14(6), pages 1-24, March.
    16. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    17. Paulo Reis Mourao, 2019. "The effectiveness of Green voices in parliaments: Do Green Parties matter in the control of pollution?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 985-1011, April.
    18. Bin Zhou & Stephan Thies & Ramana Gudipudi & Matthias K B Lüdeke & Jürgen P Kropp & Diego Rybski, 2020. "A Gini approach to spatial CO2 emissions," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    19. Fan, Meiting & Li, Mengxu & Liu, Jianghua & Shao, Shuai, 2022. "Is high natural resource dependence doomed to low carbon emission efficiency? Evidence from 283 cities in China," Energy Economics, Elsevier, vol. 115(C).
    20. Rainald Borck, 2019. "Bevölkerungsdichte, Stadtstruktur und Umweltverschmutzung [Population density, urban structure and air pollution]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 5(1), pages 161-171, November.
    21. Peng Du & Antony Wood & Brent Stephens, 2016. "Empirical Operational Energy Analysis of Downtown High-Rise vs. Suburban Low-Rise Lifestyles: A Chicago Case Study," Energies, MDPI, vol. 9(6), pages 1-27, June.
    22. Jie Su & Bo Zhou & Yuanpei Liao & Chaoshen Wang & Tian Feng, 2022. "Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China," Land, MDPI, vol. 11(4), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    2. Chao Liu & Sen Huang & Peng Xu & Zhong-ren Peng, 2018. "Exploring an integrated urban carbon dioxide (CO2) emission model and mitigation plan for new cities," Environment and Planning B, , vol. 45(5), pages 821-841, September.
    3. Rui Wang & Quan Yuan, 2017. "Are denser cities greener? Evidence from China, 2000–2010," Natural Resources Forum, Blackwell Publishing, vol. 41(3), pages 179-189, August.
    4. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    5. Proque, Andressa Lemes & dos Santos, Gervásio Ferreira & Betarelli Junior, Admir Antonio & Larson, William D., 2020. "Effects of land use and transportation policies on the spatial distribution of urban energy consumption in Brazil," Energy Economics, Elsevier, vol. 90(C).
    6. Clark, Thomas A., 2013. "Metropolitan density, energy efficiency and carbon emissions: Multi-attribute tradeoffs and their policy implications," Energy Policy, Elsevier, vol. 53(C), pages 413-428.
    7. Yahui Guang & Yongbin Huang, 2022. "Urban Form and Household Energy Consumption: Evidence from China Panel Data," Land, MDPI, vol. 11(8), pages 1-15, August.
    8. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    9. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    10. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    11. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    12. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    13. Bereitschaft, Bradley, 2020. "Gentrification and the evolution of commuting behavior within America's urban cores, 2000–2015," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    15. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    16. Yves Bettignies & Joao Meirelles & Gabriela Fernandez & Franziska Meinherz & Paul Hoekman & Philippe Bouillard & Aristide Athanassiadis, 2019. "The Scale-Dependent Behaviour of Cities: A Cross-Cities Multiscale Driver Analysis of Urban Energy Use," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    17. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    18. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    19. Safirova, Elena A. & Houde, Sébastien & Harrington, Winston, 2007. "Spatial Development and Energy Consumption," RFF Working Paper Series dp-07-51, Resources for the Future.
    20. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:352-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.