IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v72y2014icp219-234.html
   My bibliography  Save this article

Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles

Author

Listed:
  • Longden, Thomas

Abstract

The importance of a focus on mobility and the kilometres travelled using light duty vehicles is reflected in the persistence of strong demand for personal mobility and emissions that tend to be linked with population and economic growth. Simulation results using the WITCH model show that changes in the kilometres driven per year using light duty vehicles have a notable impact on investments related to the development of battery related technologies. As a result, different mobility futures have notably different optimal vehicle fleet compositions. As climate policy becomes more stringent, achieving abatement with increased mobility implies large investments in battery related technologies in comparison to the 2010 level. The model results also show that the Electric Vehicles Initiative goal of a 2% share of vehicles in 2020 could be achieved with climate policy in place. However, notable cost reductions and the removal of barriers to diffusion will need to continue for the EVI goal to be achieved.

Suggested Citation

  • Longden, Thomas, 2014. "Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles," Energy Policy, Elsevier, vol. 72(C), pages 219-234.
  • Handle: RePEc:eee:enepol:v:72:y:2014:i:c:p:219-234
    DOI: 10.1016/j.enpol.2014.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514002699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. Frändberg, Lotta & Vilhelmson, Bertil, 2011. "More or less travel: personal mobility trends in the Swedish population focusing gender and cohort," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1235-1244.
    4. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    5. Schafer, Andreas, 1998. "The global demand for motorized mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 455-477, August.
    6. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    7. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
    8. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    9. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    10. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    11. Girod, Bastien & van Vuuren, Detlef P. & de Vries, Bert, 2013. "Influence of travel behavior on global CO2 emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 183-197.
    12. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    13. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    14. Tobias. Wiesenthal & Guillaume LEDUC & Pierpaolo & Wolfgang SCHADE & Jonathan KÖHLER, 2011. "Mapping innovation in the European transport sector. An assessment of R&D efforts and priorities, institutional capacities, drivers and barriers to innovation," JRC Research Reports JRC63918, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmerling, Johannes & Drouet, Laurent Drouet & Reis, Lara Aleluia & Bevione, Michela & Berger, Loic & Bosetti, Valentina & Carrara, Samuel & De Cian, Enrica & De Maere D'Aertrycke, Gauthier & Longden,, 2016. "The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways," MITP: Mitigation, Innovation and Transformation Pathways 240748, Fondazione Eni Enrico Mattei (FEEM).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    2. Thomas Longden, 2012. "Deviations in Kilometres Travelled: The Impact of Different Mobility Futures on Energy Use and Climate," Working Papers 2012.71, Fondazione Eni Enrico Mattei.
    3. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    4. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    5. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    6. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    7. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    8. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    9. Shardul Agrawala & Francesco Bosello & Carlo Carraro & Kelly De Bruin & Enrica De Cian & Rob Dellink & Elisa Lanzi, 2011. "Plan Or React? Analysis Of Adaptation Costs And Benefits Using Integrated Assessment Models," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 175-208.
    10. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    11. Emanuele Massetti & Andrea Bastianin & Alice Favero, 2010. "Investments and Financial Flows Induced by Climate Mitigation Policies," Working Papers 2010.13, Fondazione Eni Enrico Mattei.
    12. Favero, Alice & Massetti, Emanuele, 2014. "Trade of woody biomass for electricity generation under climate mitigation policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 166-190.
    13. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2009. "Human capital formation and global warming mitigation: evidence from an integrated assessment model," Working Papers 2009_30, Department of Economics, University of Venice "Ca' Foscari".
    14. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    15. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    16. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    17. Emanuele Massetti, 2011. "Carbon tax scenarios for China and India: exploring politically feasible mitigation goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 209-227, September.
    18. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    19. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    20. Bosello, Francesco & Carraro, Carlo & De Cian, Enrica, 2013. "Adaptation can help mitigation: an integrated approach to post-2012 climate policy," Environment and Development Economics, Cambridge University Press, vol. 18(3), pages 270-290, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:72:y:2014:i:c:p:219-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.