A software reliability model incorporating fault removal efficiency and it’s release policy
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-023-01430-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.
- Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
- Lujia Wang & Qingpei Hu & Jian Liu, 2016. "Software reliability growth modeling and analysis with dual fault detection and correction processes," IISE Transactions, Taylor & Francis Journals, vol. 48(4), pages 359-370, April.
- Pham, Hoang & Zhang, Xuemei, 2003. "NHPP software reliability and cost models with testing coverage," European Journal of Operational Research, Elsevier, vol. 145(2), pages 443-454, March.
- Subhashis Chatterjee & Ankur Shukla & Hoang Pham, 2019. "Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point," Journal of Risk and Reliability, , vol. 233(2), pages 246-256, April.
- Qiuying Li & Hoang Pham, 2021. "Software Reliability Modeling Incorporating Fault Detection and Fault Correction Processes with Testing Coverage and Fault Amount Dependency," Mathematics, MDPI, vol. 10(1), pages 1-22, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shivani Kushwaha & Ajay Kumar, 2024. "Optimizing software release decisions: a TFN-based uncertainty modeling approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3940-3953, August.
- Ritu Bibyan & Sameer Anand & Anu G. Aggarwal & Abhishek Tandon, 2023. "Multi-release testing coverage-based SRGM considering error generation and change-point incorporating the random effect," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1877-1887, October.
- Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
- Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
- Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
- Chih-Chiang Fang & Chun-Wu Yeh, 2016. "Effective confidence interval estimation of fault-detection process of software reliability growth models," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2878-2892, September.
- Anu Aggarwal & Sudeep Kumar & Ritu Gupta, 2024. "Testing coverage based NHPP software reliability growth modeling with testing effort and change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5157-5166, November.
- Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
- Adarsh Anand & Mohini Agarwal & Gunjan Bansal & A. H. S. Garmabaki, 2016. "Studying product diffusion based on market coverage," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 135-146, December.
- Shakshi Singhal & P. K. Kapur & Vivek Kumar & Saurabh Panwar, 2024. "Stochastic debugging based reliability growth models for Open Source Software project," Annals of Operations Research, Springer, vol. 340(1), pages 531-569, September.
- Rajat Arora & Rubina Mittal & Anu Gupta Aggarwal & P. K. Kapur, 2023. "Investigating the impact of effort slippages in software development project," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 878-893, June.
- Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
- Hirose, Hideo, 2012. "Estimation of the number of failures in the Weibull model using the ordinary differential equation," European Journal of Operational Research, Elsevier, vol. 223(3), pages 722-731.
- Qian, Yanjun & Xie, Min & Goh, Thong Ngee & Lin, Jun, 2010. "Optimal testing strategies in overlapped design process," European Journal of Operational Research, Elsevier, vol. 206(1), pages 131-143, October.
- Qiuying Li & Hoang Pham, 2021. "Software Reliability Modeling Incorporating Fault Detection and Fault Correction Processes with Testing Coverage and Fault Amount Dependency," Mathematics, MDPI, vol. 10(1), pages 1-22, December.
- Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
- Subhashis Chatterjee & Deepjyoti Saha & Akhilesh Sharma & Yogesh Verma, 2022. "Reliability and optimal release time analysis for multi up-gradation software with imperfect debugging and varied testing coverage under the effect of random field environments," Annals of Operations Research, Springer, vol. 312(1), pages 65-85, May.
- Li, Dongmin & Hu, Qingpei & Wang, Lujia & Yu, Dan, 2019. "Statistical inference for Mt/G/Infinity queueing systems under incomplete observations," European Journal of Operational Research, Elsevier, vol. 279(3), pages 882-901.
- Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
- Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.
More about this item
Keywords
Non-homogenous Poisson process; Fault removal efficiency; Software cost model; Software reliability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01430-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.