IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0181524.html
   My bibliography  Save this article

A testing-coverage software reliability model considering fault removal efficiency and error generation

Author

Listed:
  • Qiuying Li
  • Hoang Pham

Abstract

In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.

Suggested Citation

  • Qiuying Li & Hoang Pham, 2017. "A testing-coverage software reliability model considering fault removal efficiency and error generation," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0181524
    DOI: 10.1371/journal.pone.0181524
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181524
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0181524&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0181524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    2. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    3. Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
    4. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    5. Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.
    6. Ranjan Kumar & Subhash Kumar & Sanjay K. Tiwari, 2019. "A study of software reliability on big data open source software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 242-250, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0181524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.