IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2476584.html
   My bibliography  Save this article

Software Reliability Growth Model with Partial Differential Equation for Various Debugging Processes

Author

Listed:
  • Jiajun Xu
  • Shuzhen Yao

Abstract

Most Software Reliability Growth Models (SRGMs) based on the Nonhomogeneous Poisson Process (NHPP) generally assume perfect or imperfect debugging. However, environmental factors introduce great uncertainty for SRGMs in the development and testing phase. We propose a novel NHPP model based on partial differential equation (PDE), to quantify the uncertainties associated with perfect or imperfect debugging process. We represent the environmental uncertainties collectively as a noise of arbitrary correlation. Under the new stochastic framework, one could compute the full statistical information of the debugging process, for example, its probabilistic density function (PDF). Through a number of comparisons with historical data and existing methods, such as the classic NHPP model, the proposed model exhibits a closer fitting to observation. In addition to conventional focus on the mean value of fault detection, the newly derived full statistical information could further help software developers make decisions on system maintenance and risk assessment.

Suggested Citation

  • Jiajun Xu & Shuzhen Yao, 2016. "Software Reliability Growth Model with Partial Differential Equation for Various Debugging Processes," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, January.
  • Handle: RePEc:hin:jnlmpe:2476584
    DOI: 10.1155/2016/2476584
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/2476584.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/2476584.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/2476584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabassum Naz Sindhu & Sadia Anwar & Marwa K. H. Hassan & Showkat Ahmad Lone & Tahani A. Abushal & Anum Shafiq, 2023. "An Analysis of the New Reliability Model Based on Bathtub-Shaped Failure Rate Distribution with Application to Failure Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    2. Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2476584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.