IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v224y2010i2p97-103.html
   My bibliography  Save this article

Integrated framework for safety management and uncertainty management

Author

Listed:
  • E B Abrahamsen
  • T Aven
  • R S Iversen

Abstract

Safety management and uncertainty management have traditionally been completely separate functions. The two disciplines are, to a large extent, based on different scientific pillars. The safety discipline typically produces frequency estimates of specific hazardous events, whereas the uncertainty discipline produces prediction intervals based on probability distribution quantiles, in addition to mean values. Furthermore, the safety discipline has a focus on risk acceptance criteria, whereas the uncertainty discipline makes top-ten and similar lists to rank the most critical uncertainty aspects. These differences make it difficult to obtain an integrated framework for safety management and uncertainty management. However, the recent introduction of risk perspectives highlighting the uncertainty component of risk has provided an improved basis for development of such an approach. By seeing risk as a two-dimensional concept covering events and consequences on the one side and uncertainties on the other, the content and boundaries of risk assessments are changed. The gap between the two disciplines can, to a large extent, be bridged. The purpose of the current paper is to present and discuss an integrated framework for these disciplines and traditions, based on this risk perspective. The starting point is petroleum operations, but the discussion is, to a large extent, general.

Suggested Citation

  • E B Abrahamsen & T Aven & R S Iversen, 2010. "Integrated framework for safety management and uncertainty management," Journal of Risk and Reliability, , vol. 224(2), pages 97-103, June.
  • Handle: RePEc:sae:risrel:v:224:y:2010:i:2:p:97-103
    DOI: 10.1243/1748006XJRR301
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR301
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Erik Vinnem, 2007. "Offshore Risk Assessment," Springer Series in Reliability Engineering, Springer, edition 2, number 978-1-84628-717-6, March.
    2. Aven, Terje, 2008. "A semi-quantitative approach to risk analysis, as an alternative to QRAs," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 790-797.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abrahamsen, Eirik Bjorheim & Abrahamsen, Håkon Bjorheim & Milazzo, Maria Francesca & Selvik, Jon Tømmerås, 2018. "Using the ALARP principle for safety management in the energy production sector of chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 160-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neelke Doorn, 2015. "The Blind Spot in Risk Ethics: Managing Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 354-360, March.
    2. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    3. Alireza M. Gelyani & Jon Tømmerås Selvik & Eirik Bjorheim Abrahamsen, 2016. "Decision criteria for updating test intervals for well barriers," Journal of Risk Research, Taylor & Francis Journals, vol. 19(3), pages 305-315, March.
    4. Zhong, Shengtong & Langseth, Helge & Nielsen, Thomas Dyhre, 2014. "A classification-based approach to monitoring the safety of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 61-71.
    5. Birnur Özbaş & İlhan Or & Tayfur Altıok, 2013. "Comprehensive scenario analysis for mitigation of risks of the maritime traffic in the Strait of Istanbul," Journal of Risk Research, Taylor & Francis Journals, vol. 16(5), pages 541-561, May.
    6. Berner, Christine Louise & Flage, Roger, 2016. "Comparing and integrating the NUSAP notational scheme with an uncertainty based risk perspective," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 185-194.
    7. Julie Shortridge & Janey Smith Camp, 2019. "Addressing Climate Change as an Emerging Risk to Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 959-967, May.
    8. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Dai, Lijuan & Ehlers, Sören & Rausand, Marvin & Utne, Ingrid Bouwer, 2013. "Risk of collision between service vessels and offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 18-31.
    10. Maryam Tabibzadeh & Najmedin Meshkati, 2014. "Learning from the BP Deepwater Horizon accident: risk analysis of human and organizational factors in negative pressure test," Environment Systems and Decisions, Springer, vol. 34(2), pages 194-207, June.
    11. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    12. Simeu-Abazi, Zineb & Di Mascolo, Maria & Knotek, Michal, 2010. "Fault diagnosis for discrete event systems: Modelling and verification," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 369-378.
    13. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    14. Guikema, S.D. & Aven, T., 2010. "Is ALARP applicable to the management of terrorist risks?," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 823-827.
    15. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    16. Kamel Karoui, 2016. "Security novel risk assessment framework based on reversible metrics: a case study of DDoS attacks on an E‐commerce web server," International Journal of Network Management, John Wiley & Sons, vol. 26(6), pages 553-578, November.
    17. Scarlett, Lynn & Linkov, Igor & Kousky, Carolyn, 2011. "Risk Management Practices: Cross-Agency Comparisons with Minerals Management Service," RFF Working Paper Series dp-10-67, Resources for the Future.
    18. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    19. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    20. Abrahamsen, Eirik Bjorheim & Abrahamsen, Håkon Bjorheim & Milazzo, Maria Francesca & Selvik, Jon Tømmerås, 2018. "Using the ALARP principle for safety management in the energy production sector of chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 160-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:224:y:2010:i:2:p:97-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.