IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v201y2020ics0951832019311998.html
   My bibliography  Save this article

Security assessment of cross-border electricity interconnections

Author

Listed:
  • Beyza, Jesus
  • Gil, Pablo
  • Masera, Marcelo
  • Yusta, Jose M.

Abstract

Cross-border electricity interconnections are important for ensuring energy exchange and addressing undesirable events such as power outages and blackouts. This paper assesses the performance of interconnection lines by measuring their impacts on the main reliability and vulnerability indicators of interconnected power systems. The reliability study is performed using the sequential Monte Carlo simulation technique, while the vulnerability assessment is carried out by proposing a cascading failures methodology. The conclusions obtained show that highly connected infrastructures have simultaneously high reliability and limited robustness, which suggests that both approaches show different operational characteristics of the power system. Nevertheless, an appropriate increase in the number and capacity of the interconnections can help to improve both security parameters of the power supply. Seven case studies are performed based on the IEEE RTS-96 test system. The results can be used to help transmission system operators better understand the behaviour and performance of electrical networks.

Suggested Citation

  • Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019311998
    DOI: 10.1016/j.ress.2020.106950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019311998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    3. Zhang, Wenping & Xia, Yongxiang & Ouyang, Bo & Jiang, Lurong, 2015. "Effect of network size on robustness of interconnected networks under targeted attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 80-88.
    4. Ali Kadhem, Athraa & Abdul Wahab, Noor Izzri & Aris, Ishak & Jasni, Jasronita & Abdalla, Ahmed N., 2017. "Computational techniques for assessing the reliability and sustainability of electrical power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1175-1186.
    5. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    6. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    7. Aven, Terje, 2008. "A semi-quantitative approach to risk analysis, as an alternative to QRAs," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 790-797.
    8. Clausen, Jonas & Hansson, Sven Ove & Nilsson, Fred, 2006. "Generalizing the safety factor approach," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 964-973.
    9. Ahern, Eoin P. & Deane, Paul & Persson, Tobias & Ó Gallachóir, Brian & Murphy, Jerry D., 2015. "A perspective on the potential role of renewable gas in a smart energy island system," Renewable Energy, Elsevier, vol. 78(C), pages 648-656.
    10. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    11. Terje Aven & Ortwin Renn, 2009. "The Role of Quantitative Risk Assessments for Characterizing Risk and Uncertainty and Delineating Appropriate Risk Management Options, with Special Emphasis on Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 587-600, April.
    12. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    13. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    14. Bier, Vicki M. & Gratz, Eli R. & Haphuriwat, Naraphorn J. & Magua, Wairimu & Wierzbicki, Kevin R., 2007. "Methodology for identifying near-optimal interdiction strategies for a power transmission system," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1155-1161.
    15. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    16. Ouyang, Min & Pan, Zhezhe & Hong, Liu & Zhao, Lijing, 2014. "Correlation analysis of different vulnerability metrics on power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 204-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Jun & Qu, Yuqing & She, Buxin & Song, Chenhui, 2023. "Operational boundary of flow network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    3. Eryilmaz, Serkan & Navarro, Jorge, 2022. "A decision theoretic framework for reliability-based optimal wind turbine selection," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    2. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    3. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    5. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Forsberg, Samuel & Thomas, Karin & Bergkvist, Mikael, 2023. "Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    9. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    11. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    12. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    13. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. David, Alexander E. & Gjorgiev, Blazhe & Sansavini, Giovanni, 2020. "Quantitative comparison of cascading failure models for risk-based decision making in power systems," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    15. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    16. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    17. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    18. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    19. Hang Thi-Thuy Le & Eleonora Riva Sanseverino & Ninh Quang Nguyen & Maria Luisa Di Silvestre & Salvatore Favuzza & Binh Doan Van & Rossano Musca, 2023. "Critical Assessments of the Potential for Integrating Renewable Energy into Isolated Grids on Vietnamese Islands: The Case of the An-Binh Grid," Energies, MDPI, vol. 16(5), pages 1-23, March.
    20. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019311998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.