IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i4p369-378.html
   My bibliography  Save this article

Fault diagnosis for discrete event systems: Modelling and verification

Author

Listed:
  • Simeu-Abazi, Zineb
  • Di Mascolo, Maria
  • Knotek, Michal

Abstract

This paper proposes an effective way for diagnosis of discrete-event systems using a timed-automaton. It is based on the model-checking technique, thanks to time analysis of the timed model. The paper proposes a method to construct all the timed models and details the different steps used to obtain the diagnosis path. A dynamic model with temporal transitions is proposed in order to model the system. By “dynamical model†, we mean an extension of timed automata for which the faulty states are identified. The model of the studied system contains the faultless functioning states and all the faulty states. Our method is based on the backward exploitation of the dynamic model, where all possible reverse paths are searched. The reverse path is the connection of the faulty state to the initial state. The diagnosis method is based on the coherence between the faulty occurrence time and the reverse path length. A real-world batch process is used to demonstrate the modelling steps and the proposed backward time analysis method to reach the diagnosis results.

Suggested Citation

  • Simeu-Abazi, Zineb & Di Mascolo, Maria & Knotek, Michal, 2010. "Fault diagnosis for discrete event systems: Modelling and verification," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 369-378.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:4:p:369-378
    DOI: 10.1016/j.ress.2009.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, B. & Jenkinson, I. & Wang, J., 2009. "Methodology of using delay-time analysis for a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 111-124.
    2. Aven, Terje, 2008. "A semi-quantitative approach to risk analysis, as an alternative to QRAs," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 790-797.
    3. Kwang Pil, Chang & Rausand, Marvin & Vatn, Jørn, 2008. "Reliability assessment of reliquefaction systems on LNG carriers," Reliability Engineering and System Safety, Elsevier, vol. 93(9), pages 1345-1353.
    4. Simsek, Hidayet Tunc & Sengupta, Raja & Yovine, Sergio & Eskafi, Farokh, 1999. "Fault Diagnosis for Intra-platoon Communications," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3fq6247t, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Rui & Verhagen, Wim J.C. & Curran, Richard, 2020. "A systematic methodology for Prognostic and Health Management system architecture definition," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Simeu-Abazi, Zineb & Lefebvre, Arnaud & Derain, Jean-Pierre, 2011. "A methodology of alarm filtering using dynamic fault tree," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 257-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vatn, Jørn & Aven, Terje, 2010. "An approach to maintenance optimization where safety issues are important," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 58-63.
    2. Neelke Doorn, 2015. "The Blind Spot in Risk Ethics: Managing Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 354-360, March.
    3. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    4. Kamel Karoui, 2016. "Security novel risk assessment framework based on reversible metrics: a case study of DDoS attacks on an E‐commerce web server," International Journal of Network Management, John Wiley & Sons, vol. 26(6), pages 553-578, November.
    5. Zafar Hameed & Jørn Vatn, 2012. "Role of grouping in the development of an overall maintenance optimization framework for offshore wind turbines," Journal of Risk and Reliability, , vol. 226(6), pages 584-601, December.
    6. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    7. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    8. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    9. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    10. Wang, Wenbin & Banjevic, Dragan, 2012. "Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 1-7.
    11. Wang, Wenbin, 2011. "A joint spare part and maintenance inspection optimisation model using the Delay-Time concept," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1535-1541.
    12. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    13. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    14. Askeland, Tore & Flage, Roger & Aven, Terje, 2017. "Moving beyond probabilities – Strength of knowledge characterisations applied to security," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 196-205.
    15. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    16. Wang, Wenbin, 2012. "A stochastic model for joint spare parts inventory and planned maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 216(1), pages 127-139.
    17. Shortridge, Julie & Aven, Terje & Guikema, Seth, 2017. "Risk assessment under deep uncertainty: A methodological comparison," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 12-23.
    18. Khan, Bushra & Khan, Faisal & Veitch, Brian & Yang, Ming, 2018. "An operational risk analysis tool to analyze marine transportation in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 485-502.
    19. Laggoune, Radouane & Chateauneuf, Alaa & Aissani, Djamil, 2010. "Impact of few failure data on the opportunistic replacement policy for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 108-119.
    20. Aven, Terje, 2016. "Supplementing quantitative risk assessments with a stage addressing the risk understanding of the decision maker," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 51-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:4:p:369-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.