On Longitudinal Item Response Theory Models: A Didactic
Author
Abstract
Suggested Citation
DOI: 10.3102/1076998619882026
Download full text from publisher
References listed on IDEAS
- Erling Andersen, 1985. "Estimating latent correlations between repeated testings," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 3-16, March.
- Matthias Davier & Xueli Xu & Claus Carstensen, 2011. "Measuring Growth in a Longitudinal Large-Scale Assessment with a General Latent Variable Model," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 318-336, April.
- Harvey Goldstein & Jon Rasbash, 1996. "Improved Approximations for Multilevel Models with Binary Responses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 505-513, May.
- Xiao‐Li Meng & David Van Dyk, 1997. "The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 511-567.
- Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
- Frank Rijmen & Kristof Vansteelandt & Paul Boeck, 2008. "Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 167-182, June.
- Germáan Rodríguez & Noreen Goldman, 1995. "An Assessment of Estimation Procedures for Multilevel Models with Binary Responses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(1), pages 73-89, January.
- Curtis, S. McKay, 2010. "BUGS Code for Item Response Theory," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(c01).
- Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
- Susan Embretson, 1991. "A multidimensional latent trait model for measuring learning and change," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 495-515, September.
- Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Andrade, Dalton F. & Tavares, Heliton R., 2005. "Item response theory for longitudinal data: population parameter estimation," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 1-22, July.
- Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
- William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hiroshi Tamano & Daichi Mochihashi, 2023. "Dynamical Non-compensatory Multidimensional IRT Model Using Variational Approximation," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 487-526, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
- Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
- Li Cai & Carrie R. Houts, 2021. "Longitudinal Analysis of Patient-Reported Outcomes in Clinical Trials: Applications of Multilevel and Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 754-777, September.
- Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
- Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
- Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
- Matthias Davier & Xueli Xu & Claus Carstensen, 2011. "Measuring Growth in a Longitudinal Large-Scale Assessment with a General Latent Variable Model," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 318-336, April.
- Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
- Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
- Sun-Joo Cho & Allan Cohen & Brian Bottge, 2013. "Detecting Intervention Effects Using a Multilevel Latent Transition Analysis with a Mixture IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 576-600, July.
- Royce Anders & William Batchelder, 2015. "Cultural Consensus Theory for the Ordinal Data Case," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 151-181, March.
- Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
- Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
- An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
- Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
- Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
- Santana, Paula & Santos, Rita & Nogueira, Helena, 2009. "The link between local environment and obesity: A multilevel analysis in the Lisbon Metropolitan Area, Portugal," Social Science & Medicine, Elsevier, vol. 68(4), pages 601-609, February.
- Jaspers, Esther, 2018. "Opening up on consumer materialism," Other publications TiSEM a21cb1c8-5af1-46cc-9ea0-a, Tilburg University, School of Economics and Management.
- Satoshi Usami & Ross Jacobucci & Timothy Hayes, 2019. "The performance of latent growth curve model-based structural equation model trees to uncover population heterogeneity in growth trajectories," Computational Statistics, Springer, vol. 34(1), pages 1-22, March.
- Elena A. Erosheva & S. McKay Curtis, 2017. "Dealing with Reflection Invariance in Bayesian Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 295-307, June.
More about this item
Keywords
item response theory; latent growth curve model; overall ability; domain ability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:45:y:2020:i:3:p:339-368. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.