IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i2p491-513.html
   My bibliography  Save this article

The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties

Author

Listed:
  • Jeffrey Rouder
  • Jordan Province
  • Richard Morey
  • Pablo Gomez
  • Andrew Heathcote

Abstract

We present a cognitive process model of response choice and response time performance data that has excellent psychometric properties and may be used in a wide variety of contexts. In the model there is an accumulator associated with each response option. These accumulators have bounds, and the first accumulator to reach its bound determines the response time and response choice. The times at which accumulator reaches its bound is assumed to be lognormally distributed, hence the model is race or minima process among lognormal variables. A key property of the model is that it is relatively straightforward to place a wide variety of models on the logarithm of these finishing times including linear models, structural equation models, autoregressive models, growth-curve models, etc. Consequently, the model has excellent statistical and psychometric properties and can be used in a wide range of contexts, from laboratory experiments to high-stakes testing, to assess performance. We provide a Bayesian hierarchical analysis of the model, and illustrate its flexibility with an application in testing and one in lexical decision making, a reading skill. Copyright The Psychometric Society 2015

Suggested Citation

  • Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:2:p:491-513
    DOI: 10.1007/s11336-013-9396-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9396-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9396-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Wild & W. R. Gilks, 1993. "Adaptive Rejection Sampling from Log‐Concave Density Functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(4), pages 701-709, December.
    2. Jeffrey Rouder, 2005. "Are unshifted distributional models appropriate for response time?," Psychometrika, Springer;The Psychometric Society, vol. 70(2), pages 377-381, June.
    3. Jeffrey Rouder & Dongchu Sun & Paul Speckman & Jun Lu & Duo Zhou, 2003. "A hierarchical bayesian statistical framework for response time distributions," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 589-606, December.
    4. Gerard Breukelen, 2005. "Psychometric Modeling of response speed and accuracy with mixed and conditional regression," Psychometrika, Springer;The Psychometric Society, vol. 70(2), pages 359-376, June.
    5. Susan Embretson, 1991. "A multidimensional latent trait model for measuring learning and change," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 495-515, September.
    6. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Peter Craigmile & Mario Peruggia & Trisha Van Zandt, 2010. "Hierarchical Bayes Models for Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 613-632, December.
    9. G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldo Gardini & Carlo Trivisano & Enrico Fabrizi, 2021. "Bayesian Analysis of ANOVA and Mixed Models on the Log-Transformed Response Variable," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 619-641, June.
    2. Qian Wu & Monique Vanerum & Anouk Agten & Andrés Christiansen & Frank Vandenabeele & Jean-Michel Rigo & Rianne Janssen, 2021. "Certainty-Based Marking on Multiple-Choice Items: Psychometrics Meets Decision Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 518-543, June.
    3. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    4. Fang Liu & Xiaojing Wang & Roeland Hancock & Ming-Hui Chen, 2022. "Bayesian Model Assessment for Jointly Modeling Multidimensional Response Data with Application to Computerized Testing," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1290-1317, December.
    5. Daniel W. Heck & Edgar Erdfelder & Pascal J. Kieslich, 2018. "Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 893-918, December.
    6. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Loeys & Y. Rosseel & K. Baten, 2011. "A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 487-503, July.
    2. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    3. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    4. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    5. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    6. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    7. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    8. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    9. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    10. Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
    11. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    12. Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
    13. Hua-Hua Chang, 2015. "Psychometrics Behind Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 1-20, March.
    14. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
    15. Maria Bolsinova & Jesper Tijmstra, 2019. "Modeling Differences Between Response Times of Correct and Incorrect Responses," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1018-1046, December.
    16. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    17. Matthias von Davier & Lale Khorramdel & Qiwei He & Hyo Jeong Shin & Haiwen Chen, 2019. "Developments in Psychometric Population Models for Technology-Based Large-Scale Assessments: An Overview of Challenges and Opportunities," Journal of Educational and Behavioral Statistics, , vol. 44(6), pages 671-705, December.
    18. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    19. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    20. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:2:p:491-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.