IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i2p535-559.html
   My bibliography  Save this article

Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing

Author

Listed:
  • Li Cai

Abstract

Lord and Wingersky’s (Appl Psychol Meas 8:453–461, 1984 ) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord–Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord–Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications. Copyright The Psychometric Society 2015

Suggested Citation

  • Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:2:p:535-559
    DOI: 10.1007/s11336-014-9411-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-014-9411-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-014-9411-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    2. Yiu-Fai Yung & David Thissen & Lori McLeod, 1999. "On the relationship between the higher-order factor model and the hierarchical factor model," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 113-128, June.
    3. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    4. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    5. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    6. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    7. Frank Rijmen & Kristof Vansteelandt & Paul Boeck, 2008. "Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 167-182, June.
    8. John Ross, 1966. "An empirical study of a logistic mental test model," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 325-340, September.
    9. John Schmid & John Leiman, 1957. "The development of hierarchical factor solutions," Psychometrika, Springer;The Psychometric Society, vol. 22(1), pages 53-61, March.
    10. Karl Holzinger & Frances Swineford, 1937. "The Bi-factor method," Psychometrika, Springer;The Psychometric Society, vol. 2(1), pages 41-54, March.
    11. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin D. Schalet & Sangdon Lim & David Cella & Seung W. Choi, 2021. "Linking Scores with Patient-Reported Health Outcome Instruments:A VALIDATION STUDY AND COMPARISON OF THREE LINKING METHODS," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 717-746, September.
    2. Sijia Huang & Li Cai, 2021. "Lord–Wingersky Algorithm Version 2.5 with Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 973-993, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    2. Sijia Huang & Li Cai, 2021. "Lord–Wingersky Algorithm Version 2.5 with Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 973-993, December.
    3. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    4. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    5. Li Cai & Carrie R. Houts, 2021. "Longitudinal Analysis of Patient-Reported Outcomes in Clinical Trials: Applications of Multilevel and Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 754-777, September.
    6. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    7. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2018. "CFA Models with a General Factor and Multiple Sets of Secondary Factors," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 785-808, December.
    8. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    9. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    10. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    11. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    12. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2020. "The ultrametric correlation matrix for modelling hierarchical latent concepts," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 837-853, December.
    13. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
    14. Yang Liu & Jan Hannig, 2016. "Generalized Fiducial Inference for Binary Logistic Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 290-324, June.
    15. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    16. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    17. Robert Jennrich & Peter Bentler, 2011. "Exploratory Bi-Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 537-549, October.
    18. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Bi-factor and Second-Order Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 132-157, March.
    19. Niels G. Waller, 2018. "Direct Schmid–Leiman Transformations and Rank-Deficient Loadings Matrices," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 858-870, December.
    20. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:2:p:535-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.