IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v86y2021i4d10.1007_s11336-021-09785-y.html
   My bibliography  Save this article

Lord–Wingersky Algorithm Version 2.5 with Applications

Author

Listed:
  • Sijia Huang

    (Indiana University Bloomington)

  • Li Cai

    (University of California, Los Angeles (UCLA))

Abstract

Item response theory scoring based on summed scores is employed frequently in the practice of educational and psychological measurement. Lord and Wingersky (Appl Psychol Meas 8(4):453–461, 1984) proposed a recursive algorithm to compute the summed score likelihood. Cai (Psychometrika 80(2):535–559, 2015) extended the original Lord–Wingersky algorithm to the case of two-tier multidimensional item factor models and called it Lord–Wingersky algorithm Version 2.0. The 2.0 algorithm utilizes dimension reduction to efficiently compute summed score likelihoods associated with the general dimensions in the model. The output of the algorithm is useful for various purposes, for example, scoring, scale alignment, and model fit checking. In the research reported here, a further extension to the Lord–Wingersky algorithm 2.0 is proposed. The new algorithm, which we call Lord–Wingersky algorithm Version 2.5, yields the summed score likelihoods for all latent variables in the model conditional on observed score combinations. The proposed algorithm is illustrated with empirical data for three potential application areas: (a) describing achievement growth using score combinations across adjacent grades, (b) identification of noteworthy subscores for reporting, and (c) detection of aberrant responses.

Suggested Citation

  • Sijia Huang & Li Cai, 2021. "Lord–Wingersky Algorithm Version 2.5 with Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 973-993, December.
  • Handle: RePEc:spr:psycho:v:86:y:2021:i:4:d:10.1007_s11336-021-09785-y
    DOI: 10.1007/s11336-021-09785-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09785-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09785-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    2. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    3. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    4. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    5. Lehman, Anthony F., 1988. "A quality of life interview for the chronically mentally ill," Evaluation and Program Planning, Elsevier, vol. 11(1), pages 51-62, January.
    6. Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
    7. Richard A. Feinberg & Matthias von Davier, 2020. "Conditional Subscore Reporting Using Iterated Discrete Convolutions," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 515-533, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
    2. Li Cai & Carrie R. Houts, 2021. "Longitudinal Analysis of Patient-Reported Outcomes in Clinical Trials: Applications of Multilevel and Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 754-777, September.
    3. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    4. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    5. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    6. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    7. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    8. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
    9. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    10. Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
    11. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    12. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    13. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    14. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    15. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    16. Scott Monroe, 2019. "Estimation of Expected Fisher Information for IRT Models," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 431-447, August.
    17. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.
    18. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
    19. Yang Liu & Jan Hannig, 2016. "Generalized Fiducial Inference for Binary Logistic Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 290-324, June.
    20. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:86:y:2021:i:4:d:10.1007_s11336-021-09785-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.