IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v85y2020i2d10.1007_s11336-020-09709-2.html
   My bibliography  Save this article

Students’ Complex Problem Solving Profiles

Author

Listed:
  • Michela Gnaldi

    (University of Perugia)

  • Silvia Bacci

    (University of Florence)

  • Thiemo Kunze

    (University of Luxembourg)

  • Samuel Greiff

    (University of Luxembourg)

Abstract

Complex problem solving (CPS) is an up-and-coming twenty-first century skill that requires test-takers to solve dynamically changing problems, often assessed using computer-based tests. The log data that users produce when interacting with a computer-based test provide valuable information about each individual behavioral action they undertake, but such data are rather difficult to handle from a statistical point of view. This paper addresses this issue by building upon recent research focused on decoding log data and aims to identify homogeneous student profiles with regard to their ability to solve CPS tasks. Therefore, we estimated a discrete two-tier item response theory model, which allowed us to profile units (i.e., students) while taking into account the multidimensionality of the data and the explanatory effect of individual characteristics. The results indicate that: (1) CPS can be thought of as a three-dimensional latent variable; (2) there are ten latent classes of students with homogenous profiles regarding the CPS dimensions; (3) students in the higher latent classes generally demonstrate higher cognitive and non-cognitive performances; (4) some of the latent classes seem to profit from learning-by-doing within tasks, whereas others seem to exhibit the reverse behavior; (5) cognitive and non-cognitive skills, as well as gender and to some extent age, contribute to distinguishing among the latent classes.

Suggested Citation

  • Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
  • Handle: RePEc:spr:psycho:v:85:y:2020:i:2:d:10.1007_s11336-020-09709-2
    DOI: 10.1007/s11336-020-09709-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-020-09709-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-020-09709-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    2. Francesco Bartolucci, 2007. "A class of multidimensional IRT models for testing unidimensionality and clustering items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 141-157, June.
    3. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    4. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    5. Formann, Anton K., 2007. "Mixture analysis of multivariate categorical data with covariates and missing entries," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5236-5246, July.
    6. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    7. Robert Mislevy & Norman Verhelst, 1990. "Modeling item responses when different subjects employ different solution strategies," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 195-215, June.
    8. Lotz, Christin & Scherer, Ronny & Greiff, Samuel & Sparfeldt, Jörn R., 2017. "Intelligence in action – Effective strategic behaviors while solving complex problems," Intelligence, Elsevier, vol. 64(C), pages 98-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolay, Björn & Krieger, Florian & Kuhn, Jörg-Tobias & Graesser, Arthur C. & Ifenthaler, Dirk & Baker, Ryan & Greiff, Samuel, 2023. "Unsuccessful and successful complex problem solvers – A log file analysis of complex problem solving strategies across multiple tasks," Intelligence, Elsevier, vol. 101(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
    2. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    3. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.
    4. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    5. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    6. Victoria T. Tanaka & George Engelhard & Matthew P. Rabbitt, 2020. "Using a Bifactor Model to Measure Food Insecurity in Households with Children," Journal of Family and Economic Issues, Springer, vol. 41(3), pages 492-504, September.
    7. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    8. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    9. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    10. Sijia Huang & Li Cai, 2021. "Lord–Wingersky Algorithm Version 2.5 with Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 973-993, December.
    11. Silvia Bacci & Bruno Bertaccini & Alessandra Petrucci, 2020. "Beliefs and needs of academic teachers: a latent class analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 597-617, September.
    12. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    13. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    14. Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
    15. Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
    16. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2018. "CFA Models with a General Factor and Multiple Sets of Secondary Factors," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 785-808, December.
    17. Joachim Büschken & Thomas Otter & Greg M. Allenby, 2013. "The Dimensionality of Customer Satisfaction Survey Responses and Implications for Driver Analysis," Marketing Science, INFORMS, vol. 32(4), pages 533-553, July.
    18. Gülden Kaya Uyanik & Levent Ertuna, 2022. "Examination of Testlet Effect in Open-Ended Items," SAGE Open, , vol. 12(1), pages 21582440221, February.
    19. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    20. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:85:y:2020:i:2:d:10.1007_s11336-020-09709-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.