A comparative analysis of artificial neural network architectures for building energy consumption forecasting
Author
Abstract
Suggested Citation
DOI: 10.1177/1550147719877616
Download full text from publisher
References listed on IDEAS
- Jihoon Moon & Yongsung Kim & Minjae Son & Eenjun Hwang, 2018. "Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron," Energies, MDPI, vol. 11(12), pages 1-20, November.
- K. Gnana Sheela & S. N. Deepa, 2013. "Review on Methods to Fix Number of Hidden Neurons in Neural Networks," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, June.
- Antonio Del Corte-Valiente & José Luis Castillo-Sequera & Ana Castillo-Martinez & José Manuel Gómez-Pulido & Jose-Maria Gutierrez-Martinez, 2017. "An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems," Energies, MDPI, vol. 10(2), pages 1-18, February.
- Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
- Antimo Barbato & Cristiana Bolchini & Angela Geronazzo & Elisa Quintarelli & Andrei Palamarciuc & Alessandro Pitì & Cristina Rottondi & Giacomo Verticale, 2016. "Energy Optimization and Management of Demand Response Interactions in a Smart Campus," Energies, MDPI, vol. 9(6), pages 1-20, May.
- Jingpeng Yue & Zhijian Hu & Chendan Li & Juan C. Vasquez & Josep M. Guerrero, 2017. "Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System," Energies, MDPI, vol. 10(7), pages 1-14, July.
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
- Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
- Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
- Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
- Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Jingrui Xie & Tao Hong, 2017. "Wind Speed for Load Forecasting Models," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.
- Mat Daut, Mohammad Azhar & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah, 2017. "Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1108-1118.
- Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
- Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nibedita Mahanta & Ruma Talukdar, 2024. "Forecasting of Electricity Consumption by Seasonal Autoregressive Integrated Moving Average Model in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 393-400, September.
- Moaaz Elkabalawy & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2024. "CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
- Ruma Talukdar & Nibedita Mahanta, 2023. "Forecasting of Domestic Electricity Consumption in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 229-235, September.
- Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
- Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
- Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Stephen Oladipo & Yanxia Sun & Abraham Amole, 2022. "Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19," Energies, MDPI, vol. 15(21), pages 1-20, October.
- Mohd. Ahmed & Saeed AlQadhi & Javed Mallick & Nabil Ben Kahla & Hoang Anh Le & Chander Kumar Singh & Hoang Thi Hang, 2022. "Artificial Neural Networks for Sustainable Development of the Construction Industry," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
- Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
- Deyslen Mariano-Hernández & Luis Hernández-Callejo & Martín Solís & Angel Zorita-Lamadrid & Oscar Duque-Pérez & Luis Gonzalez-Morales & Felix Santos García & Alvaro Jaramillo-Duque & Adalberto Ospino-, 2022. "Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
- Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
- Cramer, Eike & Witthaut, Dirk & Mitsos, Alexander & Dahmen, Manuel, 2023. "Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 346(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
- Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
- Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
- Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
- Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
- Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
- Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
- S. M. Mahfuz Alam & Mohd. Hasan Ali, 2020. "Equation Based New Methods for Residential Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-22, December.
- Severinsen, A. & Myrland, Ø., 2022. "Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
More about this item
Keywords
Short-term load forecasting; building energy consumption forecasting; artificial neural network; hyperparameter tuning; scaled exponential linear unit;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:9:p:1550147719877616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.