IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p398-d70758.html
   My bibliography  Save this article

Energy Optimization and Management of Demand Response Interactions in a Smart Campus

Author

Listed:
  • Antimo Barbato

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

  • Cristiana Bolchini

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

  • Angela Geronazzo

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

  • Elisa Quintarelli

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

  • Andrei Palamarciuc

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

  • Alessandro Pitì

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

  • Cristina Rottondi

    (Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Lugano (USI)—University of Applied Science and Arts of Southern Switzerland (SUPSI), Manno 6928, Switzerland)

  • Giacomo Verticale

    (Deparment of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, Milano 20133, Italy)

Abstract

The proposed framework enables innovative power management in smart campuses, integrating local renewable energy sources, battery banks and controllable loads and supporting Demand Response interactions with the electricity grid operators. The paper describes each system component: the Energy Management System responsible for power usage scheduling, the telecommunication infrastructure in charge of data exchanging and the integrated data repository devoted to information storage. We also discuss the relevant use cases and validate the framework in a few deployed demonstrators.

Suggested Citation

  • Antimo Barbato & Cristiana Bolchini & Angela Geronazzo & Elisa Quintarelli & Andrei Palamarciuc & Alessandro Pitì & Cristina Rottondi & Giacomo Verticale, 2016. "Energy Optimization and Management of Demand Response Interactions in a Smart Campus," Energies, MDPI, vol. 9(6), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:398-:d:70758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    2. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    3. Cristina Rottondi & Markus Duchon & Dagmar Koss & Andrei Palamarciuc & Alessandro Pití & Giacomo Verticale & Bernhard Schätz, 2015. "An Energy Management Service for the Smart Office," Energies, MDPI, vol. 8(10), pages 1-18, October.
    4. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    5. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    2. William Villegas-Ch & Jhoann Molina-Enriquez & Carlos Chicaiza-Tamayo & Iván Ortiz-Garcés & Sergio Luján-Mora, 2019. "Application of a Big Data Framework for Data Monitoring on a Smart Campus," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    3. Vian Ahmed & Karam Abu Alnaaj & Sara Saboor, 2020. "An Investigation into Stakeholders’ Perception of Smart Campus Criteria: The American University of Sharjah as a Case Study," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    4. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    5. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    6. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    7. William Villegas-Ch & Xavier Palacios-Pacheco & Milton Román-Cañizares, 2020. "Integration of IoT and Blockchain to in the Processes of a University Campus," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    8. Jaehong Whang & Woohyun Hwang & Yeuntae Yoo & Gilsoo Jang, 2018. "Introduction of Smart Grid Station Configuration and Application in Guri Branch Office of KEPCO," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    9. Kai Ma & Yege Bai & Jie Yang & Yangqing Yu & Qiuxia Yang, 2017. "Demand-Side Energy Management Based on Nonconvex Optimization in Smart Grid," Energies, MDPI, vol. 10(10), pages 1-17, October.
    10. Flah Aymen & Chokri Mahmoudi, 2019. "A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City," Energies, MDPI, vol. 12(5), pages 1-22, March.
    11. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Rottondi & Markus Duchon & Dagmar Koss & Andrei Palamarciuc & Alessandro Pití & Giacomo Verticale & Bernhard Schätz, 2015. "An Energy Management Service for the Smart Office," Energies, MDPI, vol. 8(10), pages 1-18, October.
    2. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    3. Nadeem Javaid & Sakeena Javaid & Wadood Abdul & Imran Ahmed & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid," Energies, MDPI, vol. 10(3), pages 1-27, March.
    4. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    5. Lu, Jie & Zhang, Chaobo & Li, Junyang & Zhao, Yang & Qiu, Weikang & Li, Tingting & Zhou, Kai & He, Jianing, 2022. "Graph convolutional networks-based method for estimating design loads of complex buildings in the preliminary design stage," Applied Energy, Elsevier, vol. 322(C).
    6. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    7. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    8. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    9. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    10. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    11. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    12. Liangwen Yan & Fengfeng Qian & Wei Li, 2018. "Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm," Energies, MDPI, vol. 12(1), pages 1-13, December.
    13. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    14. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    15. Asad, R. & Kazemi, A., 2014. "A novel distributed optimal power sharing method for radial dc microgrids with different distributed energy sources," Energy, Elsevier, vol. 72(C), pages 291-299.
    16. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    17. Raji Atia & Noboru Yamada, 2016. "Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids," Energies, MDPI, vol. 9(3), pages 1-16, March.
    18. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    19. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    20. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:398-:d:70758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.