IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p175-d89379.html
   My bibliography  Save this article

An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems

Author

Listed:
  • Antonio Del Corte-Valiente

    (Department of Computer Engineering, Polytechnic School, University of Alcala, 28871 Alcalá de Henares, Spain)

  • José Luis Castillo-Sequera

    (Department of Computer Sciences, Polytechnic School, University of Alcala, 28871 Alcalá de Henares, Spain)

  • Ana Castillo-Martinez

    (Department of Computer Sciences, Polytechnic School, University of Alcala, 28871 Alcalá de Henares, Spain)

  • José Manuel Gómez-Pulido

    (Department of Computer Sciences, Polytechnic School, University of Alcala, 28871 Alcalá de Henares, Spain)

  • Jose-Maria Gutierrez-Martinez

    (Department of Computer Sciences, Polytechnic School, University of Alcala, 28871 Alcalá de Henares, Spain)

Abstract

Street lighting installations are an essential service for modern life due to their capability of creating a welcoming feeling at nighttime. Nevertheless, several studies have highlighted that it is possible to improve the quality of the light significantly improving the uniformity of the illuminance. The main difficulty arises when trying to improve some of the installation’s characteristics based only on statistical analysis of the light distribution. This paper presents a new algorithm that is able to obtain the overall illuminance uniformity in order to improve this sort of installations. To develop this algorithm it was necessary to perform a detailed study of all the elements which are part of street lighting installations. Because classification is one of the most important tasks in the application areas of artificial neural networks, we compared the performances of six types of training algorithms in a feed forward neural network for analyzing the overall uniformity in outdoor lighting systems. We found that the best algorithm that minimizes the error is “Levenberg-Marquardt back-propagation”, which approximates the desired output of the training pattern. By means of this kind of algorithm, it is possible to help to lighting professionals optimize the quality of street lighting installations.

Suggested Citation

  • Antonio Del Corte-Valiente & José Luis Castillo-Sequera & Ana Castillo-Martinez & José Manuel Gómez-Pulido & Jose-Maria Gutierrez-Martinez, 2017. "An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems," Energies, MDPI, vol. 10(2), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:175-:d:89379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    2. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
    3. Zaiyong Tang & Paul A. Fishwick, 1993. "Feedforward Neural Nets as Models for Time Series Forecasting," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 374-385, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Ogando-Martínez & Javier López-Gómez & Lara Febrero-Garrido, 2018. "Maintenance Factor Identification in Outdoor Lighting Installations Using Simulation and Optimization Techniques," Energies, MDPI, vol. 11(8), pages 1-13, August.
    2. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoran Vojinovic & Vojislav Kecman & Rainer Seidel, 2001. "A data mining approach to financial time series modelling and forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 225-239, December.
    2. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    3. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    4. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    5. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    6. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    7. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    8. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    9. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    10. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    11. Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
    12. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    13. Andrea Bucci, 2020. "Cholesky–ANN models for predicting multivariate realized volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 865-876, September.
    14. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    15. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    16. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    17. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    18. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    19. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    20. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:175-:d:89379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.