IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7249-d1462307.html
   My bibliography  Save this article

CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors

Author

Listed:
  • Moaaz Elkabalawy

    (Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Abobakr Al-Sakkaf

    (Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Eslam Mohammed Abdelkader

    (Structural Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • Ghasan Alfalah

    (Department of Architecture and Building Science, College of Architecture and Planning, King Saud University, Riyadh 11362, Saudi Arabia)

Abstract

The significant energy consumption associated with the built environment demands comprehensive energy prediction modelling. Leveraging their ability to capture intricate patterns without extensive domain knowledge, supervised data-driven approaches present a marked advantage in adaptability over traditional physical-based building energy models. This study employs various machine learning models to predict energy consumption for an office building in Berkeley, California. To enhance the accuracy of these predictions, different feature selection techniques, including principal component analysis (PCA), decision tree regression (DTR), and Pearson correlation analysis, were adopted to identify key attributes of energy consumption and address collinearity. The analyses yielded nine influential attributes: heating, ventilation, and air conditioning (HVAC) system operating parameters, indoor and outdoor environmental parameters, and occupancy. To overcome missing occupancy data in the datasets, we investigated the possibility of occupancy-based Wi-Fi prediction using different machine learning algorithms. The results of the occupancy prediction modelling indicate that Wi-Fi can be used with acceptable accuracy in predicting occupancy count, which can be leveraged to analyze occupant comfort and enhance the accuracy of building energy models. Six machine learning models were tested for energy prediction using two different datasets: one before and one after occupancy prediction. Using a 10-fold cross-validation with an 8:2 training-to-testing ratio, the Random Forest algorithm emerged superior, exhibiting the highest R 2 value of 0.92 and the lowest RMSE of 3.78 when occupancy data were included. Additionally, an error propagation analysis was conducted to assess the impact of the occupancy-based Wi-Fi prediction model’s error on the energy prediction model. The results indicated that Wi-Fi-based occupancy prediction can improve the data inputs for building energy models, leading to more accurate energy consumption predictions. The findings underscore the potential of integrating the developed energy prediction models with fault detection systems, model predictive controllers, and energy load shape analysis, ultimately enhancing energy management practices.

Suggested Citation

  • Moaaz Elkabalawy & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2024. "CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7249-:d:1462307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    2. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    3. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    4. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    5. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    2. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    3. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    5. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    6. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
    8. Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
    9. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    10. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    11. Amir Shahcheraghian & Adrian Ilinca, 2024. "Advanced Machine Learning Techniques for Energy Consumption Analysis and Optimization at UBC Campus: Correlations with Meteorological Variables," Energies, MDPI, vol. 17(18), pages 1-22, September.
    12. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    13. Taewook Kang, 2020. "BIM-Based Human Machine Interface (HMI) Framework for Energy Management," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    14. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    15. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    16. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    17. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    18. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    19. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    20. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7249-:d:1462307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.