IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v28y2017i8p827-845.html
   My bibliography  Save this article

A numerical approach to assess air pollution by ship engines in manoeuvring mode and fuel switch conditions

Author

Listed:
  • Paolo Iodice
  • Giuseppe Langella
  • Amedeo Amoresano

Abstract

Due to increasing worldwide trade, transportations of goods through seaports have been gradually growing in the past years; harbours are main centres of economic activities, with unavoidable consequences on the air quality degradation and human health of many urbanized ports. This study provides a methodology to assess the impact of pollutant emission from marine engines on ambient air quality of the coastal areas. The environmental pollution from sea traffic was evaluated by assessing the production and atmospheric dispersion of exhaust emissions produced by ship engines in manoeuvring mode and in fuel switch conditions from heavy-sulphur residual fuel oil to low-sulphur distillate fuel oil. Specifically, this study analyses the emissive behaviour of merchant ships, equipped with large size diesel engines and transiting in the port of Naples, which is located very close to the densely populated urban centre. The spatial distribution of the air pollutant concentrations was calculated with a specific dispersion modelling approach, delivering significant data about the environmental impact of merchant ship emissions on the coastal urban area. The NO X , PM and SO X pollutant concentrations estimated with this methodology were also compared with pollution levels measured in an experimental monitoring campaign performed in the port of Naples. Estimated concentration levels were lower than measured values because the latter were affected by other anthropogenic emissive sources adjacent to port area, above all exhaust emissions from the road transport sector. Both the calculated and measured concentration levels over coastal area were below the European Limit Values.

Suggested Citation

  • Paolo Iodice & Giuseppe Langella & Amedeo Amoresano, 2017. "A numerical approach to assess air pollution by ship engines in manoeuvring mode and fuel switch conditions," Energy & Environment, , vol. 28(8), pages 827-845, December.
  • Handle: RePEc:sae:engenv:v:28:y:2017:i:8:p:827-845
    DOI: 10.1177/0958305X17734050
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X17734050
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X17734050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Walsh, Conor & Bows, Alice, 2012. "Size matters: Exploring the importance of vessel characteristics to inform estimates of shipping emissions," Applied Energy, Elsevier, vol. 98(C), pages 128-137.
    2. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    3. Giakoumis, E.G. & Alafouzos, A.I., 2010. "Study of diesel engine performance and emissions during a Transient Cycle applying an engine mapping-based methodology," Applied Energy, Elsevier, vol. 87(4), pages 1358-1365, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    2. Xingyu Liang & Zhijie Zhu & Xinyi Cao & Kun Wang & Yuesen Wang, 2022. "Research on the Soot Generation of Diesel Surrogate Mechanisms of Different Carbon Chain Length," Energies, MDPI, vol. 15(20), pages 1-17, October.
    3. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    4. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    5. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    6. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    7. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    9. Zhongchang Liu & Xing Yuan & Jing Tian & Yongqiang Han & Runzhao Li & Guanlong Gao, 2018. "Investigation of Sectional-Stage Loading Strategies on a Two-Stage Turbocharged Heavy-Duty Diesel Engine under Transient Operation with EGR," Energies, MDPI, vol. 11(1), pages 1-19, January.
    10. Ernestos Tzannatos & Lefteris Stournaras, 2015. "EEDI analysis of Ro-Pax and passenger ships in Greece," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(4), pages 305-316, May.
    11. Ančić, Ivica & Šestan, Ante, 2015. "Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers," Energy Policy, Elsevier, vol. 84(C), pages 107-116.
    12. Yum, Kevin Koosup & Lefebvre, Nicolas & Pedersen, Eilif, 2017. "An experimental investigation of the effects of cyclic transient loads on a turbocharged diesel engine," Applied Energy, Elsevier, vol. 185(P1), pages 472-481.
    13. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    14. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    15. Bishop, Justin D.K. & Stettler, Marc E.J. & Molden, N. & Boies, Adam M., 2016. "Engine maps of fuel use and emissions from transient driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 202-217.
    16. Evangelos G. Giakoumis & George Triantafillou, 2018. "Analysis of the Effect of Vehicle, Driving and Road Parameters on the Transient Performance and Emissions of a Turbocharged Truck," Energies, MDPI, vol. 11(2), pages 1-21, January.
    17. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
    18. Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 2: Combustion analysis," Applied Energy, Elsevier, vol. 88(4), pages 1130-1139, April.
    19. Giakoumis, Evangelos G., 2012. "A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles," Applied Energy, Elsevier, vol. 98(C), pages 273-291.
    20. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:28:y:2017:i:8:p:827-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.