IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp362-372.html
   My bibliography  Save this article

Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes

Author

Listed:
  • Traut, Michael
  • Gilbert, Paul
  • Walsh, Conor
  • Bows, Alice
  • Filippone, Antonio
  • Stansby, Peter
  • Wood, Ruth

Abstract

Wind is a renewable energy source that is freely available on the world’s oceans. As shipping faces the challenge of reducing its dependence on fossil fuels and cutting its carbon emissions this paper seeks to explore the potential for harnessing wind power for shipping. Numerical models of two wind power technologies, a Flettner rotor and a towing kite, are linked with wind data along a set of five trade routes. Wind-generated thrust and propulsive power are computed as a function of local wind and ship velocity. The average wind power contribution on a given route ranges between 193kW and 373kW for a single Flettner rotor and between 127kW and 461kW for the towing kite. The variability of the power output from the Flettner rotor is shown to be smaller than that from the towing kite while, due to the different dependencies on wind speed and direction, the average power contribution from a Flettner rotor is higher than that from the kite on some routes and lower on others. While for most forms of international cargo shipping wind may not be suitable as the sole source of propulsive energy, a comparison of average output to main engine power requirements of typical vessels serving the routes indicates that it could deliver a significant share. For instance, installing three Flettner rotors on a 5500dwt general cargo carrier could, on average, provide more than half of the power required by the main engine under typical slow steaming conditions. Uncertainties and simplifying assumptions underlying the model analysis are discussed and implications of the results are considered in light of the urgent need for decarbonisation. This paper demonstrates the significant opportunities for step jump emissions reductions that wind technologies have to offer. It outlines next steps towards realising the potential, highlighting a demand for more detailed studies on socio-economic and technical barriers to implementation, and providing a basis for research into step-change emissions reductions in the shipping sector.

Suggested Citation

  • Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:362-372
    DOI: 10.1016/j.apenergy.2013.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCollum, David L & Gould, Gregory & Greene, David L, 2010. "Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies," Institute of Transportation Studies, Working Paper Series qt5nz642qb, Institute of Transportation Studies, UC Davis.
    2. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2011. "Reductions in greenhouse gas emissions and cost by shipping at lower speeds," Energy Policy, Elsevier, vol. 39(6), pages 3456-3464, June.
    3. Philippe Crist, 2009. "Greenhouse Gas Emissions Reduction Potential from International Shipping," OECD/ITF Joint Transport Research Centre Discussion Papers 2009/11, OECD Publishing.
    4. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    5. Gilbert, Paul & Bows, Alice, 2012. "Exploring the scope for complementary sub-global policy to mitigate CO2 from shipping," Energy Policy, Elsevier, vol. 50(C), pages 613-622.
    6. Tore Longva & Magnus S. Eide & Rolf Skjong, 2010. "Determining a required energy efficiency design index level for new ships based on a cost-effectiveness criterion," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(2), pages 129-143, March.
    7. Walsh, Conor & Bows, Alice, 2012. "Size matters: Exploring the importance of vessel characteristics to inform estimates of shipping emissions," Applied Energy, Elsevier, vol. 98(C), pages 128-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Hofmann, Erik & Solakivi, Tomi & Töyli, Juuso & Zinn, Martin, 2018. "Oil price shocks and the financial performance patterns of logistics service providers," Energy Economics, Elsevier, vol. 72(C), pages 290-306.
    3. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. John E. Candelo-Beccera & Leonardo Bohórquez Maldonado & Edwin Paipa Sanabria & Hernán Vergara Pestana & José Jiménez García, 2023. "Technological Alternatives for Electric Propulsion Systems in the Waterway Sector," Energies, MDPI, vol. 16(23), pages 1-16, November.
    5. Ignė Stalmokaitė & Tommy Larsson Segerlind & Johanna Yliskylä‐Peuralahti, 2023. "Revival of wind‐powered shipping: Comparing the early‐stage innovation process of an incumbent and a newcomer firm," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 958-975, February.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Meng, Xianghui & Yang, Yanan & Yin, Songwei & Wang, Xiaohao, 2024. "Unmanned sailboat with self-balancing rotating sail based on elastic rope: Modeling, optimization, and sea trials," Applied Energy, Elsevier, vol. 363(C).
    8. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.
    9. Elizabeth Lindstad & Henning Borgen & Gunnar S. Eskeland & Christopher Paalson & Harilaos Psaraftis & Osman Turan, 2019. "The Need to Amend IMO’s EEDI to Include a Threshold for Performance in Waves (Realistic Sea Conditions) to Achieve the Desired GHG Reductions," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    10. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    11. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    12. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    13. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    14. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    15. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    16. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    17. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Hannes & Styhre, Linda, 2015. "Increased energy efficiency in short sea shipping through decreased time in port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 167-178.
    2. Ančić, Ivica & Šestan, Ante, 2015. "Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers," Energy Policy, Elsevier, vol. 84(C), pages 107-116.
    3. Hualong Yang & Xuefei Ma, 2019. "Uncovering CO 2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    4. Dinwoodie, John & Tuck, Sarah & Rigot-Müller, Patrick, 2013. "Maritime oil freight flows to 2050: Delphi perceptions of maritime specialists," Energy Policy, Elsevier, vol. 63(C), pages 553-561.
    5. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Jeroen F. J. Pruyn, 2020. "Benchmarking bulkers delivered between 2010 and 2016, identifying the effect of the EEDI introduction," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-18, December.
    7. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    8. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    9. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    10. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    11. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    12. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    13. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    14. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    15. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    16. Lindstad, Haakon & Bright, Ryan M. & Strømman, Anders H., 2016. "Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation," Transport Policy, Elsevier, vol. 45(C), pages 24-30.
    17. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    18. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    19. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    20. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:362-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.