IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v40y2019i2p1-26.html
   My bibliography  Save this article

Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?

Author

Listed:
  • Kenneth Gillingham
  • Pei Huang

Abstract

A fierce debate rages on whether abundant natural gas is a bridge to a low-carbon future or a hindrance to long-term decarbonization. This paper uses a detailed energy-economic market equilibrium model to study the effects of an upper bound case of natural gas availability. We show that a market-driven abundant natural gas supply can provide substantial reductions in air pollution but does not considerably reduce CO2 emissions in the longer-term, especially relative to a moderate carbon price. However, we quantify large welfare benefits from abundant natural gas. The spatial disaggregation of our results allows for a clear picture of the distributional impacts of abundant natural gas under different carbon price scenarios, illustrating welfare gains by most regions regardless of whether there is carbon pricing, but substantial heterogeneity in the welfare gains.

Suggested Citation

  • Kenneth Gillingham & Pei Huang, 2019. "Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?," The Energy Journal, , vol. 40(2), pages 1-26, March.
  • Handle: RePEc:sae:enejou:v:40:y:2019:i:2:p:1-26
    DOI: 10.5547/01956574.40.2.kgil
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.40.2.kgil
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.40.2.kgil?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    2. Filipe M. Quintino & Edgar C. Fernandes, 2021. "Numerical Investigation of the Impact of H 2 Enrichment on Lean Biogas/Air Flames: An Analytical Modelling Approach," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. Raymond Li & Chi-Keung Woo & Asher Tishler & Jay Zarnikau, 2022. "Price Responsiveness of Residential Demand for Natural Gas in the United States," Energies, MDPI, vol. 15(12), pages 1-22, June.
    4. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "Price responsiveness of commercial demand for natural gas in the US," Energy, Elsevier, vol. 256(C).
    5. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Çalcı, Baturay & Leibowicz, Benjamin D. & Bard, Jonathan F. & Jayadev, Gopika G., 2024. "A bilevel approach to multi-period natural gas pricing and investment in gas-consuming infrastructure," Energy, Elsevier, vol. 303(C).
    7. Gillingham, Kenneth & Huang, Pei, 2021. "Racial disparities in the health effects from air pollution: Evidence from ports," ZEW Discussion Papers 21-058, ZEW - Leibniz Centre for European Economic Research.
    8. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    9. Kaixin Huang & Matthew J. Eckelman, 2022. "Appending material flows to the National Energy Modeling System (NEMS) for projecting the physical economy of the United States," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 294-308, February.
    10. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    11. Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
    12. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "How price responsive is industrial demand for natural gas in the United States?," Utilities Policy, Elsevier, vol. 74(C).
    14. Wiktor Hebda, 2021. "The North-South Gas Corridor in the Context of Poland’s Gas Transmission System—A Perfect Opportunity to Diversify Gas Resources," Energies, MDPI, vol. 14(21), pages 1-21, November.
    15. Christa D. Court & Randall W. Jackson & Amanda J. Harker Steele & Gavin Pickenpaugh & Peter Jarosi & Justin Adder & Charles Zelek, 2022. "Extending Macroeconomic Impacts Forecasting for NEMS," The Energy Journal, , vol. 43(4), pages 251-272, May.
    16. Prest, Brian C., 2020. "Supply-Side Reforms to Oil and Gas Production on Federal Lands: Modeling the Implications for Climate Emissions, Revenues, and Production Shifts," RFF Working Paper Series 20-16, Resources for the Future.
    17. Cisneros-Pineda, Alfredo & Aadland, David & Tschirhart, John, 2020. "Impacts of cattle, hunting, and natural gas development in a rangeland ecosystem," Ecological Modelling, Elsevier, vol. 431(C).
    18. Grzegorz Zych & Jakub Bronicki & Marzena Czarnecka & Grzegorz Kinelski & Jacek Kamiński, 2023. "The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries," Energies, MDPI, vol. 16(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Marshman, Daniel & Brear, Michael & Ring, Brendan, 2022. "Impact of unit commitment and RoCoF constraints on revenue sufficiency in decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 106(C).
    3. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    4. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    5. Bolinger, Mark & Millstein, Dev & Gorman, Will & Dobson, Patrick & Jeong, Seongeun, 2023. "Mind the gap: Comparing the net value of geothermal, wind, solar, and solar+storage in the Western United States," Renewable Energy, Elsevier, vol. 205(C), pages 999-1009.
    6. Mihaela IONESCU, 2019. "The Effects Of Electricity From Renewable Energy For The Energy Security Of Romania," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 21, pages 197-203, December.
    7. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    8. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    9. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    10. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    11. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    12. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    13. Dawid Buła & Dariusz Grabowski & Andrzej Lange & Marcin Maciążek & Marian Pasko, 2020. "Long- and Short-Term Comparative Analysis of Renewable Energy Sources," Energies, MDPI, vol. 13(14), pages 1-18, July.
    14. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    15. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2023. "From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company," Papers 2301.07997, arXiv.org.
    16. Marshman, Daniel & Brear, Michael & Jeppesen, Matthew & Ring, Brendan, 2020. "Performance of wholesale electricity markets with high wind penetration," Energy Economics, Elsevier, vol. 89(C).
    17. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
    18. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    19. Thi Hong Van Hoang, Syed Jawad Hussain Shahzad, Robert L. Czudaj, and Javed Ahmad Bhat, 2019. "How Do Oil Shocks Impact Energy Consumption? A Disaggregated Analysis for the U.S," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    20. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.

    More about this item

    Keywords

    Welfare; Natural gas revolution; Distributional impacts; Carbon pricing.;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:40:y:2019:i:2:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.