Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
- May, Nils, 2017.
"The impact of wind power support schemes on technology choices,"
Energy Economics, Elsevier, vol. 65(C), pages 343-354.
- May, Nils, 2015. "The Impact of Wind Power Support Schemes on Technology Choices," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112856, Verein für Socialpolitik / German Economic Association.
- Nils May, 2015. "The Impact of Wind Power Support Schemes on Technology Choices," Discussion Papers of DIW Berlin 1485, DIW Berlin, German Institute for Economic Research.
- González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
- Eichhorn, Marcus & Tafarte, Philip & Thrän, Daniela, 2017. "Towards energy landscapes – “Pathfinder for sustainable wind power locations”," Energy, Elsevier, vol. 134(C), pages 611-621.
- Rasmussen, Morten Grud & Andresen, Gorm Bruun & Greiner, Martin, 2012. "Storage and balancing synergies in a fully or highly renewable pan-European power system," Energy Policy, Elsevier, vol. 51(C), pages 642-651.
- Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
- Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
- Szarka, Nora & Scholwin, Frank & Trommler, Marcus & Fabian Jacobi, H. & Eichhorn, Marcus & Ortwein, Andreas & Thrän, Daniela, 2013. "A novel role for bioenergy: A flexible, demand-oriented power supply," Energy, Elsevier, vol. 61(C), pages 18-26.
- Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
- Schill, Wolf-Peter, 2014.
"Residual load, renewable surplus generation and storage requirements in Germany,"
Energy Policy, Elsevier, vol. 73(C), pages 65-79.
- Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
- Wolf-Peter Schill, 2013. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," Discussion Papers of DIW Berlin 1316, DIW Berlin, German Institute for Economic Research.
- Deetjen, Thomas A. & Garrison, Jared B. & Rhodes, Joshua D. & Webber, Michael E., 2016. "Solar PV integration cost variation due to array orientation and geographic location in the Electric Reliability Council of Texas," Applied Energy, Elsevier, vol. 180(C), pages 607-616.
- Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
- Lion Hirth, 2015.
"The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
- Hirth, Lion, 2013. "The Optimal Share of Variable Renewables. How the Variability of Wind and Solar Power Affects their Welfare-optimal Deployment," Energy: Resources and Markets 162373, Fondazione Eni Enrico Mattei (FEEM).
- Lion Hirth, 2013. "The Optimal Share of Variable Renewables. How the Variability of Wind and Solar Power Affects their Welfare-optimal Deployment," Working Papers 2013.90, Fondazione Eni Enrico Mattei.
- Nils May & Karsten Neuhoff & Frieder Borggrefe, 2015. "Marktanreize für systemdienliche Auslegungen von Windkraftanlagen," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 82(24), pages 555-564.
- Hartner, Michael & Ortner, André & Hiesl, Albert & Haas, Reinhard, 2015. "East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective," Applied Energy, Elsevier, vol. 160(C), pages 94-107.
- Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
- Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
- Nils May & Karsten Neuhoff & Frieder Borggrefe, 2015. "Market Incentives for System-Friendly Designs of Wind Turbines," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 5(24), pages 313-321.
- Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
- Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Jacobson, Mark Z. & Schramm, Stefan & Greiner, Martin, 2015. "Renewable build-up pathways for the US: Generation costs are not system costs," Energy, Elsevier, vol. 81(C), pages 437-445.
- Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
- Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
- Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
- Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
- Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
- Wolf-Peter Schill & Jochen Diekmann & Alexander Zerrahn, 2015. "Power Storage: An Important Option for the German Energy Transition," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 5(10), pages 137-146.
- Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
- Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
- Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
- Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
- Szarka, Nora & Eichhorn, Marcus & Kittler, Ronny & Bezama, Alberto & Thrän, Daniela, 2017. "Interpreting long-term energy scenarios and the role of bioenergy in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1222-1233.
- Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
- Zipp, Alexander, 2015. "Revenue prospects of photovoltaic in Germany—Influence opportunities by variation of the plant orientation," Energy Policy, Elsevier, vol. 81(C), pages 86-97.
- Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
- Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
- Huber, Matthias & Weissbart, Christoph, 2015. "On the optimal mix of wind and solar generation in the future Chinese power system," Energy, Elsevier, vol. 90(P1), pages 235-243.
- Killinger, Sven & Mainzer, Kai & McKenna, Russell & Kreifels, Niklas & Fichtner, Wolf, 2015. "A regional optimisation of renewable energy supply from wind and photovoltaics with respect to three key energy-political objectives," Energy, Elsevier, vol. 84(C), pages 563-574.
- Mills, Andrew D. & Wiser, Ryan H., 2015. "Strategies to mitigate declines in the economic value of wind and solar at high penetration in California," Applied Energy, Elsevier, vol. 147(C), pages 269-278.
- Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
- Lugovoy, Oleg & Gao, Shuo & Gao, Ji & Jiang, Kejun, 2021. "Feasibility study of China's electric power sector transition to zero emissions by 2050," Energy Economics, Elsevier, vol. 96(C).
- Campos, José & Csontos, Csaba & Munkácsy, Béla, 2023. "Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition," Energy, Elsevier, vol. 278(PB).
- David Ritter & Roland Meyer & Matthias Koch & Markus Haller & Dierk Bauknecht & Christoph Heinemann, 2019. "Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System," Energies, MDPI, vol. 12(16), pages 1-32, August.
- António Couto & Ana Estanqueiro, 2020. "Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand," Energies, MDPI, vol. 13(16), pages 1-21, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
- Sinn, Hans-Werner, 2017.
"Buffering volatility: A study on the limits of Germany's energy revolution,"
European Economic Review, Elsevier, vol. 99(C), pages 130-150.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany’s Energy Revolution," NBER Working Papers 22467, National Bureau of Economic Research, Inc.
- Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," Munich Reprints in Economics 49895, University of Munich, Department of Economics.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany's Energy Revolution," CESifo Working Paper Series 5950, CESifo.
- Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
- Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
- Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
- Javier L'opez Prol & Wolf-Peter Schill, 2020.
"The Economics of Variable Renewables and Electricity Storage,"
Papers
2012.15371, arXiv.org.
- López Prol, Javier & Schill, Wolf-Peter, 2021. "The Economics of Variable Renewables and Electricity Storage," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242463, Verein für Socialpolitik / German Economic Association.
- Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
- Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
- Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
- Klie, Leo & Madlener, Reinhard, 2022.
"Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power,"
Energy Economics, Elsevier, vol. 105(C).
- Klie, Leo & Madlener, Reinhard, 2020. "Optimal Configuration and Diversification of Wind Turbines: A Hybrid Approach to Improve the Penetration of Wind Power," FCN Working Papers 1/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
- Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
- Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
- Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
- Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
- Klie, Leo & Madlener, Reinhard, 2020. "Concentration Versus Diversification: A Spatial Deployment Approach to Improve the Economics of Wind Power," FCN Working Papers 2/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2021.
- Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
- Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
- Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
- Ingeborg Graabak & Magnus Korpås, 2016. "Variability Characteristics of European Wind and Solar Power Resources—A Review," Energies, MDPI, vol. 9(6), pages 1-31, June.
More about this item
Keywords
variable renewable energy sources; wind power; solar energy; Germany; pumped hydro storage; system-friendly renewables;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:324-:d:199432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.