IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224015275.html
   My bibliography  Save this article

A bilevel approach to multi-period natural gas pricing and investment in gas-consuming infrastructure

Author

Listed:
  • Çalcı, Baturay
  • Leibowicz, Benjamin D.
  • Bard, Jonathan F.
  • Jayadev, Gopika G.

Abstract

This paper investigates the strategic pricing behavior of a leader in a two-person, noncooperative game when profits depend on the purchasing response of a follower who not only reacts to changing prices instantaneously, but also builds long-lived consumption infrastructure that affects future demand. As an application of such a system, we formulate the relationship between these players in the natural gas and electricity generation industries as a bilevel problem. The leader is a natural gas producer whose objective is to maximize profit; the follower is an electric utility who solves a capacity expansion and dispatch problem with the objective of minimizing the cost of electricity generation and long-run investments. To find solutions, the bilevel problem is reformulated as a mixed-integer linear program by replacing the lower-level player’s model with its Karush–Kuhn–Tucker conditions, which are necessary and sufficient for optimality here, and linearizing the upper-level player’s objective function using the strong duality conditions of the lower-level problem. After parameterizing the model with publicly available data for Texas, we conduct scenario analyses through 2040, evaluating strategies of the natural gas producer under different policies regarding carbon taxes and incentives for carbon capture and storage (CCS). We then observe how the lower-level player responds to these strategies in terms of the evolution of the generation mix, added capacity, and CO2 emissions. We also quantify the effects of strategic pricing by running scenarios where natural gas prices are fixed. Key findings include: (1) different levels of carbon tax and CCS incentive can have non-monotonic effects on the optimal natural gas price and producer profit, (2) effects of CCS incentives can spill over to technologies without CCS, and (3) omission of strategic pricing from the model not only decreases the profit for the producer but also can increase the costs for the electricity sector.

Suggested Citation

  • Çalcı, Baturay & Leibowicz, Benjamin D. & Bard, Jonathan F. & Jayadev, Gopika G., 2024. "A bilevel approach to multi-period natural gas pricing and investment in gas-consuming infrastructure," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224015275
    DOI: 10.1016/j.energy.2024.131754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robbins, Matthew J. & Lunday, Brian J., 2016. "A bilevel formulation of the pediatric vaccine pricing problem," European Journal of Operational Research, Elsevier, vol. 248(2), pages 634-645.
    2. Martine Labbé & Patrice Marcotte & Gilles Savard, 1998. "A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing," Management Science, INFORMS, vol. 44(12-Part-1), pages 1608-1622, December.
    3. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    4. Zahedi Rad, Vahid & Torabi, S. Ali & Shakouri G., Hamed, 2019. "Joint electricity generation and transmission expansion planning under integrated gas and power system," Energy, Elsevier, vol. 167(C), pages 523-537.
    5. Feijoo, Felipe & Huppmann, Daniel & Sakiyama, Larissa & Siddiqui, Sauleh, 2016. "North American natural gas model: Impact of cross-border trade with Mexico," Energy, Elsevier, vol. 112(C), pages 1084-1095.
    6. Dempe, Stephan & Kalashnikov, Vyacheslav V. & Pérez-Valdés, Gerardo A. & Kalashnykova, Nataliya I., 2011. "Natural gas bilevel cash-out problem: Convergence of a penalty function method," European Journal of Operational Research, Elsevier, vol. 215(3), pages 532-538, December.
    7. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    8. Vyacheslav Kalashnikov & Gerardo Pérez & Nataliya Kalashnykova, 2010. "A linearization approach to solve the natural gas cash-out bilevel problem," Annals of Operations Research, Springer, vol. 181(1), pages 423-442, December.
    9. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    10. Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
    11. Bard, Jonathan F. & Plummer, John & Claude Sourie, Jean, 2000. "A bilevel programming approach to determining tax credits for biofuel production," European Journal of Operational Research, Elsevier, vol. 120(1), pages 30-46, January.
    12. Martine Labbé & Alessia Violin, 2016. "Bilevel programming and price setting problems," Annals of Operations Research, Springer, vol. 240(1), pages 141-169, May.
    13. Jan Abrell & Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, , vol. 37(4), pages 63-86, October.
    14. Wei Wei & Yile Liang & Feng Liu & Shengwei Mei & Fang Tian, 2014. "Taxing Strategies for Carbon Emissions: A Bilevel Optimization Approach," Energies, MDPI, vol. 7(4), pages 1-18, April.
    15. Zhu, Qianru & Leibowicz, Benjamin D. & Busby, Joshua W. & Shidore, Sarang & Adelman, David E. & Olmstead, Sheila M., 2022. "Enhancing policy realism in energy system optimization models: Politically feasible decarbonization pathways for the United States," Energy Policy, Elsevier, vol. 161(C).
    16. Sarmiento, Luis & Molar-Cruz, Anahi & Avraam, Charalampos & Brown, Maxwell & Rosellón, Juan & Siddiqui, Sauleh & Rodríguez, Baltazar Solano, 2021. "Mexico and U.S. power systems under variations in natural gas prices," Energy Policy, Elsevier, vol. 156(C).
    17. Feijoo, Felipe & Das, Tapas K., 2015. "Emissions control via carbon policies and microgrid generation: A bilevel model and Pareto analysis," Energy, Elsevier, vol. 90(P2), pages 1545-1555.
    18. Hossa Almutairi & Samir Elhedhli, 2014. "Carbon tax based on the emission factor: a bilevel programming approach," Journal of Global Optimization, Springer, vol. 58(4), pages 795-815, April.
    19. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    20. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    21. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    22. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    23. Haewon McJeon & Jae Edmonds & Nico Bauer & Leon Clarke & Brian Fisher & Brian P. Flannery & Jérôme Hilaire & Volker Krey & Giacomo Marangoni & Raymond Mi & Keywan Riahi & Holger Rogner & Massimo Tavon, 2014. "Limited impact on decadal-scale climate change from increased use of natural gas," Nature, Nature, vol. 514(7523), pages 482-485, October.
    24. Kovacevic, Raimund M. & Pflug, Georg Ch., 2014. "Electricity swing option pricing by stochastic bilevel optimization: A survey and new approaches," European Journal of Operational Research, Elsevier, vol. 237(2), pages 389-403.
    25. Kenneth Gillingham & Pei Huang, 2019. "Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?," The Energy Journal, , vol. 40(2), pages 1-26, March.
    26. Kalashnikov, Vyacheslav V. & Pérez-Valdés, Gerardo A. & Tomasgard, Asgeir & Kalashnykova, Nataliya I., 2010. "Natural gas cash-out problem: Bilevel stochastic optimization approach," European Journal of Operational Research, Elsevier, vol. 206(1), pages 18-33, October.
    27. Sonja Wogrin & Salvador Pineda & Diego A. Tejada-Arango, 2020. "Applications of Bilevel Optimization in Energy and Electricity Markets," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 139-168, Springer.
    28. Vyacheslav V. Kalashnikov & Francisco Benita & Patrick Mehlitz, 2015. "The Natural Gas Cash-Out Problem: A Bilevel Optimal Control Approach," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-17, October.
    29. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    30. Dempe, Stephan & Kalashnikov, Vyacheslav & Rios-Mercado, Roger Z., 2005. "Discrete bilevel programming: Application to a natural gas cash-out problem," European Journal of Operational Research, Elsevier, vol. 166(2), pages 469-488, October.
    31. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2023. "Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets," Energy, Elsevier, vol. 277(C).
    32. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    33. Xu, Zhongwen & Yao, Liming & Liu, Qiaoling & Long, Yin, 2019. "Policy implications for achieving the carbon emission reduction target by 2030 in Japan-Analysis based on a bilevel equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    34. Nguyen, Hieu T. & Felder, Frank A., 2020. "Generation expansion planning with renewable energy credit markets: A bilevel programming approach," Applied Energy, Elsevier, vol. 276(C).
    35. Lin, Boqiang & Ullah, Sami, 2024. "Modeling the impacts of changes in nuclear energy, natural gas, and coal in the environment through the novel DARDL approach," Energy, Elsevier, vol. 287(C).
    36. Cole, Wesley J. & Medlock, Kenneth B. & Jani, Aditya, 2016. "A view to the future of natural gas and electricity: An integrated modeling approach," Energy Economics, Elsevier, vol. 60(C), pages 486-496.
    37. Mignone, Bryan K. & Showalter, Sharon & Wood, Frances & McJeon, Haewon & Steinberg, Daniel, 2017. "Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations," Energy Policy, Elsevier, vol. 110(C), pages 518-524.
    38. Zeng, Qing & Zhang, Baohua & Fang, Jiakun & Chen, Zhe, 2017. "A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system," Applied Energy, Elsevier, vol. 200(C), pages 192-203.
    39. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    40. Hodson, Elke L. & Brown, Maxwell & Cohen, Stuart & Showalter, Sharon & Wise, Marshall & Wood, Frances & Caron, Justin & Feijoo, Felipe & Iyer, Gokul & Cleary, Kathryne, 2018. "U.S. energy sector impacts of technology innovation, fuel price, and electric sector CO2 policy: Results from the EMF 32 model intercomparison study," Energy Economics, Elsevier, vol. 73(C), pages 352-370.
    41. Reimers, Andrew & Cole, Wesley & Frew, Bethany, 2019. "The impact of planning reserve margins in long-term planning models of the electricity sector," Energy Policy, Elsevier, vol. 125(C), pages 1-8.
    42. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2024. "Electricity sector impacts of water taxation for natural gas supply under high renewable generation," Energy, Elsevier, vol. 294(C).
    2. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    3. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    4. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    5. Acuna, Jorge A. & Zayas-Castro, Jose L. & Feijoo, Felipe, 2022. "A bilevel Nash-in-Nash model for hospital mergers: A key to affordable care," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    6. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    7. Wang, Guotao & Liao, Qi & Li, Zhengbing & Zhang, Haoran & Liang, Yongtu & Wei, Xuemei, 2022. "How does soaring natural gas prices impact renewable energy: A case study in China," Energy, Elsevier, vol. 252(C).
    8. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    9. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    10. Devine, Mel T. & Siddiqui, Sauleh, 2023. "Strategic investment decisions in an oligopoly with a competitive fringe: An equilibrium problem with equilibrium constraints approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1473-1494.
    11. Joaquim Dias Garcia & Guilherme Bodin & Alexandre Street, 2024. "BilevelJuMP.jl: Modeling and Solving Bilevel Optimization Problems in Julia," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 327-335, March.
    12. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    13. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Thomas Kleinert & Martine Labbé & Fr¨ank Plein & Martin Schmidt, 2020. "Technical Note—There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization," Operations Research, INFORMS, vol. 68(6), pages 1716-1721, November.
    15. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Ankur Sinha & Zhichao Lu & Kalyanmoy Deb & Pekka Malo, 2020. "Bilevel optimization based on iterative approximation of multiple mappings," Journal of Heuristics, Springer, vol. 26(2), pages 151-185, April.
    17. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.
    18. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    19. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    20. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224015275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.