IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p369-d478536.html
   My bibliography  Save this article

Numerical Investigation of the Impact of H 2 Enrichment on Lean Biogas/Air Flames: An Analytical Modelling Approach

Author

Listed:
  • Filipe M. Quintino

    (Center IN+, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal)

  • Edgar C. Fernandes

    (Center IN+, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal)

Abstract

The transition from natural gas to renewable gases such as biogas and hydrogen creates an interchangeability challenge. The laminar flame speed S L is a critical parameter in appliance design as it is a unique characteristic of the flame mixture. It is thus essential to evaluate the impact of renewable gases on S L . In this work, 1D simulations were conducted in Cantera with the USC-Mech 2.0 kinetic mechanism. The S L of three base biogas blends (BG100, BG90 and BG80) was computed for H 2 enrichment up to 50% in volume, equivalence ratio 0.8 ≤ ϕ ≤ 1.0 , p = 1 atm and T u = 298 K. It was found that the effect of H 2 enrichment is higher for base blends with higher CO 2 content as the thermal-diffusive and dilution effects of carbon dioxide are mitigated by hydrogen. The introduction of H 2 also increases the H radical pool, which is linked with the increase in S L . A new correlation to model the impact of H 2 enrichment, S L ( x H 2 ) = ζ ( ϕ ) / S L ′ ( x C O 2 ) x H 2 e x H 2 + S L ′ ( x C O 2 ) , is proposed, which exhibits good agreement with the literature data and simulations. This equation can be directly used to estimate S L without the need for a priori adaptations of fit parameters as the contributions of CO 2 and H 2 are isolated in independent variables.

Suggested Citation

  • Filipe M. Quintino & Edgar C. Fernandes, 2021. "Numerical Investigation of the Impact of H 2 Enrichment on Lean Biogas/Air Flames: An Analytical Modelling Approach," Energies, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:369-:d:478536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    2. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    3. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    4. Nearchos Stylianidis & Ulugbek Azimov & Martin Birkett, 2019. "Investigation of the Effect of Hydrogen and Methane on Combustion of Multicomponent Syngas Mixtures using a Constructed Reduced Chemical Kinetics Mechanism," Energies, MDPI, vol. 12(12), pages 1-23, June.
    5. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    6. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
    7. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    8. Kenneth Gillingham and Pei Huang, 2019. "Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Ayoobi & Pedro R. Resende & Alexandre M. Afonso, 2022. "Numerical Investigations of Combustion—An Overview," Energies, MDPI, vol. 15(9), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    2. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    3. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    4. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    7. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    8. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    10. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    11. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    12. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    13. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2023. "Two-timescale autonomous energy management strategy based on multi-agent deep reinforcement learning approach for residential multicarrier energy system," Applied Energy, Elsevier, vol. 351(C).
    15. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    16. Shirizadeh, Behrang & Quirion, Philippe, 2023. "Long-term optimization of the hydrogen-electricity nexus in France: Green, blue, or pink hydrogen?," Energy Policy, Elsevier, vol. 181(C).
    17. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    19. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    20. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:369-:d:478536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.