IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v106y2017icp41-47.html
   My bibliography  Save this article

Natural gas and spillover from the US Clean Power Plan into the Paris Agreement

Author

Listed:
  • Peters, Jeffrey C.

Abstract

Climate change has been identified as one of the today's great challenges, and mitigation likely requires policy intervention. As such, in 2015 the United States introduced the Clean Power Plan (CPP) which aims to reduce CO2 emissions from electricity production 32% from 2005 levels by 2030 and the Paris Agreement, which seeks to reduce national greenhouse gas (GHG) emissions, measured by global warming potential (GWP), 28% from 2005 levels by 2025. However, it remains unknown how the more narrowly-scoped CPP might affect the ability to achieve wider-scoped national GHG targets like the Paris Agreement. In our current state-of-world, characterized by inexpensive natural gas, the CPP will be met through large shifts from high-emitting coal power to less-emitting natural gas power, which translates to a 9.6% reduction in total US 100-year GWP without accounting for the fugitive methane. Spillover from fugitive methane could cut this reduction modestly by 0.2–1.4% or as much as 4.4% if evaluated using 20-year GWP – elucidating how different assumptions leads to different perspectives of natural gas as a "bridge fuel". The results here demonstrate the need to coordinate policies – either through additional policy (e.g. regulation of fugitive methane) or a larger-scoped CPP that includes upstream activities.

Suggested Citation

  • Peters, Jeffrey C., 2017. "Natural gas and spillover from the US Clean Power Plan into the Paris Agreement," Energy Policy, Elsevier, vol. 106(C), pages 41-47.
  • Handle: RePEc:eee:enepol:v:106:y:2017:i:c:p:41-47
    DOI: 10.1016/j.enpol.2017.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517301829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Cathles & Larry Brown & Milton Taam & Andrew Hunter, 2012. "A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea," Climatic Change, Springer, vol. 113(2), pages 525-535, July.
    2. Arora, Vipin & Cai, Yiyong, 2014. "U.S. natural gas exports and their global impacts," Applied Energy, Elsevier, vol. 120(C), pages 95-103.
    3. Bistline, John E., 2014. "Natural gas, uncertainty, and climate policy in the US electric power sector," Energy Policy, Elsevier, vol. 74(C), pages 433-442.
    4. Robert W. Gilmer & Emily Kerr, 2010. "Natural gas from shale: Texas revolution goes global," Southwest Economy, Federal Reserve Bank of Dallas, issue Q3, pages 10-13.
    5. Steven J. Davis & Christine Shearer, 2014. "A crack in the natural-gas bridge," Nature, Nature, vol. 514(7523), pages 436-437, October.
    6. Michael Levi, 2013. "Climate consequences of natural gas as a bridge fuel," Climatic Change, Springer, vol. 118(3), pages 609-623, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    2. Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Martínez, Beatriz & Torró, Hipòlit, 2018. "Hedging spark spread risk with futures," Energy Policy, Elsevier, vol. 113(C), pages 731-746.
    4. Hao Chen & Ling He & Jiachuan Chen & Bo Yuan & Teng Huang & Qi Cui, 2019. "Impacts of Clean Energy Substitution for Polluting Fossil-Fuels in Terminal Energy Consumption on the Economy and Environment in China," Sustainability, MDPI, vol. 11(22), pages 1-29, November.
    5. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J., 2018. "Less than 2°C? An Economic-Environmental Evaluation of the Paris Agreement," Ecological Economics, Elsevier, vol. 146(C), pages 69-84.
    6. Brown, Stephen P.A., 2017. "Natural gas vs. oil in U.S. transportation: Will prices confer an advantage to natural gas?," Energy Policy, Elsevier, vol. 110(C), pages 210-221.
    7. Wang, Yangjie & Chen, Xiaohong & Ren, Shenggang, 2019. "Clean energy adoption and maternal health: Evidence from China," Energy Economics, Elsevier, vol. 84(C).
    8. Chen, Yang & Shao, Shuai & Fan, Meiting & Tian, Zhihua & Yang, Lili, 2022. "One man's loss is another's gain: Does clean energy development reduce CO2 emissions in China? Evidence based on the spatial Durbin model," Energy Economics, Elsevier, vol. 107(C).
    9. Núria. J. Divins & Andrea Braga & Xavier Vendrell & Isabel Serrano & Xènia Garcia & Lluís Soler & Ilaria Lucentini & Maila Danielis & Andrea Mussio & Sara Colussi & Ignacio J. Villar-Garcia & Carlos E, 2022. "Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
    11. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    12. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    2. Hausfather, Zeke, 2015. "Bounding the climate viability of natural gas as a bridge fuel to displace coal," Energy Policy, Elsevier, vol. 86(C), pages 286-294.
    3. Zhang, Xiaochun & Myhrvold, Nathan P. & Hausfather, Zeke & Caldeira, Ken, 2016. "Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems," Applied Energy, Elsevier, vol. 167(C), pages 317-322.
    4. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
    5. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    6. Yu Zhang & John A. Rupp & John D. Graham, 2021. "Contrasting Public and Scientific Assessments of Fracking," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    7. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    8. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    9. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    10. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    11. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    12. Stephenson, Eleanor & Doukas, Alexander & Shaw, Karena, 2012. "“Greenwashing gas: Might a ‘transition fuel’ label legitimize carbon-intensive natural gas development?”," Energy Policy, Elsevier, vol. 46(C), pages 452-459.
    13. Ning Lin & Robert E. Brooks, 2021. "Global Liquified Natural Gas Trade under Energy Transition," Energies, MDPI, vol. 14(20), pages 1-30, October.
    14. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    15. Healey, Stephen & Jaccard, Mark, 2016. "Abundant low-cost natural gas and deep GHG emissions reductions for the United States," Energy Policy, Elsevier, vol. 98(C), pages 241-253.
    16. Nie, Pu-yan & Yang, Yong-cong, 2016. "Effects of energy price fluctuations on industries with energy inputs: An application to China," Applied Energy, Elsevier, vol. 165(C), pages 329-334.
    17. Bistline, John E., 2016. "Energy technology R&D portfolio management: Modeling uncertain returns and market diffusion," Applied Energy, Elsevier, vol. 183(C), pages 1181-1196.
    18. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    19. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    20. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:106:y:2017:i:c:p:41-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.