IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v38y2017i1_supplp29-46.html
   My bibliography  Save this article

Oil Subsidies and Renewable Energy in Saudi Arabia: A General Equilibrium Approach

Author

Listed:
  • Jorge Blazquez
  • Lester C Hunt
  • Baltasar Manzano

Abstract

ABSTRACT In 2016, the Kingdom of Saudi Arabia (KSA) announced its Vision 2030 strategic plan incorporating major changes to the economic structure of the country, including an intention to deploy 9.5 GW of renewable energy in an effort to reduce the penetration of oil in the electricity generation system. This paper assesses the macroeconomic impact of such changes in the KSA, coupled with reductions in implicit energy subsidies. Based on a dynamic general equilibrium model, our analysis suggests that if the KSA government were to deploy a relatively small quantity of renewable technology, consistent with the country’s Vision 2030 plans, there would be a positive impact on the KSA’s long run GDP and on households’ welfare. However, we demonstrate that if the integration costs of renewable technology were high, then households’ welfare would be maximized at around 30-40% renewables penetration. In addition, we show that a policy favoring renewable energy would increase the dependence of the KSA on oil, given that a larger share of GDP would be linked to oil exports and so, potentially, to oil price shocks. Finally, it is shown that exporting significantly more oil onto the international market could have a negative impact on the international oil price and thus could offset the potential gains from the renewable energy policy.

Suggested Citation

  • Jorge Blazquez & Lester C Hunt & Baltasar Manzano, 2017. "Oil Subsidies and Renewable Energy in Saudi Arabia: A General Equilibrium Approach," The Energy Journal, , vol. 38(1_suppl), pages 29-46, June.
  • Handle: RePEc:sae:enejou:v:38:y:2017:i:1_suppl:p:29-46
    DOI: 10.5547/01956574.38.SI1.jbla
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.38.SI1.jbla
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.38.SI1.jbla?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carlos de Miguel & Baltasar Manzano, 2006. "Optimal Oil Taxation in a Small Open Economy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 9(3), pages 438-454, July.
    2. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    3. Schmitt-Grohe, Stephanie & Uribe, Martin, 2003. "Closing small open economy models," Journal of International Economics, Elsevier, vol. 61(1), pages 163-185, October.
    4. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and growth in Eurasia," Energy Economics, Elsevier, vol. 32(6), pages 1392-1397, November.
    5. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    6. Havranek, Tomas & Horvath, Roman & Irsova, Zuzana & Rusnak, Marek, 2015. "Cross-country heterogeneity in intertemporal substitution," Journal of International Economics, Elsevier, vol. 96(1), pages 100-118.
    7. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    8. Kevin Ummel & David Wheeler, 2008. "Desert Power: The Economics of Solar Thermal Electricity for Europe, North Africa, and the Middle East," Working Papers 156, Center for Global Development.
    9. Gately, Dermot & Al-Yousef, Nourah & Al-Sheikh, Hamad M.H., 2012. "The rapid growth of domestic oil consumption in Saudi Arabia and the opportunity cost of oil exports foregone," Energy Policy, Elsevier, vol. 47(C), pages 57-68.
    10. Rotemberg, Julio J & Woodford, Michael, 1996. "Imperfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(4), pages 550-577, November.
    11. Axel Pierru and Walid Matar, 2014. "The Impact of Oil Price Volatility on Welfare in the Kingdom of Saudi Arabia: Implications for Public Investment Decision-making," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. Alyousef, Yousef & Stevens, Paul, 2011. "The cost of domestic energy prices to Saudi Arabia," Energy Policy, Elsevier, vol. 39(11), pages 6900-6905.
    13. Elie Bouri & Riza Demirer, 2016. "On the volatility transmission between oil and stock markets: a comparison of emerging importers and exporters," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 33(1), pages 63-82, April.
    14. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    15. Schwanitz, Valeria Jana & Piontek, Franziska & Bertram, Christoph & Luderer, Gunnar, 2014. "Long-term climate policy implications of phasing out fossil fuel subsidies," Energy Policy, Elsevier, vol. 67(C), pages 882-894.
    16. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    17. Plante, Michael, 2014. "The long-run macroeconomic impacts of fuel subsidies," Journal of Development Economics, Elsevier, vol. 107(C), pages 129-143.
    18. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    19. Malik, Farooq & Hammoudeh, Shawkat, 2007. "Shock and volatility transmission in the oil, US and Gulf equity markets," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 357-368.
    20. Lin, Boqiang & Li, Aijun, 2012. "Impacts of removing fossil fuel subsidies on China: How large and how to mitigate?," Energy, Elsevier, vol. 44(1), pages 741-749.
    21. Kim, In-Moo & Loungani, Prakash, 1992. "The role of energy in real business cycle models," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 173-189, April.
    22. Axel Pierru & Walid Matar, 2015. "The Prospects for Coal-fired Power Generation in Saudi Arabia," Discussion Papers ks-1528-dp022a, King Abdullah Petroleum Studies and Research Center.
    23. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    24. Mendoza, Enrique G, 1991. "Real Business Cycles in a Small Open Economy," American Economic Review, American Economic Association, vol. 81(4), pages 797-818, September.
    25. Apergis, Nicholas & Payne, James E., 2011. "Renewable and non-renewable electricity consumption–growth nexus: Evidence from emerging market economies," Applied Energy, Elsevier, vol. 88(12), pages 5226-5230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    2. McCauley, Darren & Pettigrew, Kerry, 2023. "Building a just transition in asia-pacific: Four strategies for reducing fossil fuel dependence and investing in clean energy," Energy Policy, Elsevier, vol. 183(C).
    3. Corbier, Darius & Gonand, Frédéric, 2024. "A hybrid electricity-economy model to assess the aggregate impacts of low-carbon transition: An application to France," Ecological Economics, Elsevier, vol. 216(C).
    4. Octavio Escobar, Ulises Neri, Stephan Silvestre, 2020. "Energy policy of fossil fuel–producing countries: does global energy transition matter?," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 17(1), pages 5-30, June.
    5. Shabaneh, Rami & Schenckery, Maxime, 2020. "Assessing energy policy instruments: LNG imports into Saudi Arabia," Energy Policy, Elsevier, vol. 137(C).
    6. Soummane, Salaheddine & Ghersi, Frédéric & Lefèvre, Julien, 2019. "Macroeconomic pathways of the Saudi economy: The challenge of global mitigation action versus the opportunity of national energy reforms," Energy Policy, Elsevier, vol. 130(C), pages 263-282.
    7. Ishaya Tambari & Pierre Failler, 2020. "Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns," Energies, MDPI, vol. 13(24), pages 1-21, December.
    8. Salaheddine Soummane & Frédéric Ghersi & Franck Lecocq, 2022. "Structural Transformation Options of the Saudi Economy Under Constraint of Depressed World Oil Prices," The Energy Journal, , vol. 43(3), pages 185-204, May.
    9. Blazquez, Jorge & Galeotti, Marzio & Manzano, Baltasar & Pierru, Axel & Pradhan, Shreekar, 2021. "Effects of Saudi Arabia’s economic reforms: Insights from a DSGE model," Economic Modelling, Elsevier, vol. 95(C), pages 145-169.
    10. Aldubyan, Mohammad & Gasim, Anwar, 2021. "Energy price reform in Saudi Arabia: Modeling the economic and environmental impacts and understanding the demand response," Energy Policy, Elsevier, vol. 148(PB).
    11. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    12. Majed S. Almozaini, 2019. "The Causality Relationship between Economic Growth and Energy Consumption in The World s top Energy Consumers," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 40-53.
    13. Ahn, Kwangwon & Chu, Zhuang & Lee, Daeyong, 2021. "Effects of renewable energy use in the energy mix on social welfare," Energy Economics, Elsevier, vol. 96(C).
    14. Lehua Gao & Yue Zhang & Kejie Lu, 2024. "A Study on the Driving Mechanism of Chinese Oil and Gas Companies’ Transition to Renewable Energy," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    15. Arvind Upadhyay & Anil Kumar & Vikas Kumar & Ahmed Alzaben, 2021. "A novel business strategies framework of do‐it‐yourself practices in logistics to minimise environmental waste and improve performance," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 3882-3892, December.
    16. Julia Hartmann & Andrew C Inkpen & Kannan Ramaswamy, 2021. "Different shades of green: Global oil and gas companies and renewable energy," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(5), pages 879-903, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez, Jorge & Galeotti, Marzio & Manzano, Baltasar & Pierru, Axel & Pradhan, Shreekar, 2021. "Effects of Saudi Arabia’s economic reforms: Insights from a DSGE model," Economic Modelling, Elsevier, vol. 95(C), pages 145-169.
    2. Atalla, Tarek & Blazquez, Jorge & Hunt, Lester C. & Manzano, Baltasar, 2017. "Prices versus policy: An analysis of the drivers of the primary fossil fuel mix," Energy Policy, Elsevier, vol. 106(C), pages 536-546.
    3. Andrian, Leandro Gaston, 2010. "Essays on energy economics: Microeconomic and macroeconomic dimensions," ISU General Staff Papers 201001010800002725, Iowa State University, Department of Economics.
    4. Yusuf Soner Başkaya & Timur Hülagü & Hande Küçük, 2013. "Oil Price Uncertainty in a Small Open Economy," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 61(1), pages 168-198, April.
    5. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    6. Conny Olovsson, 2019. "Oil prices in a general equilibrium model with precautionary demand for oil," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 1-17, April.
    7. Meenagh, David & Minford, Patrick & Oyekola, Olayinka, 2015. "Oil Prices and the Dynamics of Output and Real Exchange Rate," Cardiff Economics Working Papers E2015/18, Cardiff University, Cardiff Business School, Economics Section.
    8. Jorge Blazquez & Jose Maria Martin-Moreno & Rafaela Perez & Jesus Ruiz, 2017. "Fossil Fuel Price Shocks and CO2 Emissions: The Case of Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    9. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2022. "Charging the macroeconomy with an energy sector: an agent-based model," FEEM Working Papers 319877, Fondazione Eni Enrico Mattei (FEEM).
    10. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M., 2014. "Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 290-298.
    11. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2013. "The causal relationship between energy resources and economic growth in Brazil," Energy Policy, Elsevier, vol. 61(C), pages 793-801.
    12. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    13. Castillo, Paul & Rojas, Youel, 2014. "Terms of Trade and Total Factor Productivity: Empirical evidence from Latin American emerging markets," Working Papers 2014-012, Banco Central de Reserva del Perú.
    14. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    15. Apergis, Nicholas & Chang, Tsangyao & Gupta, Rangan & Ziramba, Emmanuel, 2016. "Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 318-325.
    16. Dissou, Yazid & Karnizova, Lilia, 2016. "Emissions cap or emissions tax? A multi-sector business cycle analysis," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 169-188.
    17. Al-Mulali, Usama & Ozturk, Ilhan, 2014. "Are energy conservation policies effective without harming economic growth in the Gulf Cooperation Council countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 639-650.
    18. Chen, Kan & Crucini, Mario J., 2016. "Trends and cycles in small open economies: making the case for a general equilibrium approach," Journal of Economic Dynamics and Control, Elsevier, vol. 72(C), pages 159-168.
    19. Ozcan, Burcu & Ozturk, Ilhan, 2019. "Renewable energy consumption-economic growth nexus in emerging countries: A bootstrap panel causality test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 30-37.
    20. Uribe, Martin & Yue, Vivian Z., 2006. "Country spreads and emerging countries: Who drives whom?," Journal of International Economics, Elsevier, vol. 69(1), pages 6-36, June.

    More about this item

    Keywords

    Saudi Arabia; renewable penetration; implicit oil subsidy; oil; exports; welfare costs; energy transition; general equilibrium model;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:38:y:2017:i:1_suppl:p:29-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.