IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p228-d469737.html
   My bibliography  Save this article

Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen

Author

Listed:
  • Saif Mubaarak

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China
    These authors contributed equally.)

  • Delong Zhang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China
    These authors contributed equally.)

  • Jinxin Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Yongcong Chen

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Longze Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Sayed A. Zaki

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Rongfang Yuan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Jing Wu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yan Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Meicheng Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

Abstract

Global warming and climate change are becoming a global concern. In this regard, international agreements and initiatives have been launched to accelerate the use of renewable energy and to mitigate greenhouse gas (GHG) emissions. Yemen is one of the countries signed on these agreements. However, Yemen is facing the problem that the structure of the power grid is fragile and the power shortage is serious. Accordingly, this paper aims to study the potential for renewable energy in Yemen and assess the technical and economic feasibility of hybrid energy systems. Firstly, this paper introduces the status and challenges of Yemen’s electricity sector, the status of renewable energy, and the status of GHG emission. Secondly, this study proposes the method of optimizing different configurations of off-grid hybrid (solar/wind/diesel engine) energy systems for electrifying various consumers in Taiz province, Yemen under three scenarios of energy strategies. The objective function is to seek the most optimal hybrid energy system that achieves the least cost and most advantageous technical performance, while instigating the best economic scenario of energy strategies. Finally, Homer pro software is used for simulation, optimization, and sensitivity analysis of the designed energy systems. The results found the best economically feasible scenario, the hybrid PV/wind/diesel energy system, among the other scenarios. A photovoltaic (PV)/wind energy system achieved the best technical performances of 100% CO 2 reduction, with a 54.82% reduction in the net present cost (NPC) and cost of energy (COE); while the hybrid energy system (PV/wind/diesel engine) achieved the best economic cost of 61.95% reduction in NPC and COE, with a 97.44% reduction of CO 2 emission.

Suggested Citation

  • Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:228-:d:469737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    2. Abdul-Aziz, Jamil & A-Nagi, Abdo & Zumailan, Abubaker A.R., 1993. "Global solar radiation estimation from relative sunshine hours in Yemen," Renewable Energy, Elsevier, vol. 3(6), pages 645-653.
    3. Bulut, Umit & Muratoglu, Gonul, 2018. "Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus," Energy Policy, Elsevier, vol. 123(C), pages 240-250.
    4. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    5. Surroop, Dinesh & Raghoo, Pravesh, 2018. "Renewable energy to improve energy situation in African island states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 176-183.
    6. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    7. Eveloy, Valerie & Gebreegziabher, Tesfaldet, 2019. "Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates," Energy, Elsevier, vol. 166(C), pages 426-450.
    8. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    9. Jorge Blazquez, Lester C Hunt, and Baltasar Manzano, 2017. "Oil Subsidies and Renewable Energy in Saudi Arabia: A General Equilibrium Approach," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    10. Shouman, Enas R., 2017. "International and national renewable energy for electricity with optimal cost effective for electricity in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 916-923.
    11. Hadwan, Morshed & Alkholidi, Abdulsalam, 2016. "Solar power energy solutions for Yemeni rural villages and desert communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 838-849.
    12. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    13. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    14. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Personal and psychological factors affecting the successful development of solar energy use in Yemen power sector: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 516-535.
    15. Martín-Pomares, Luis & Martínez, Diego & Polo, Jesús & Perez-Astudillo, Daniel & Bachour, Dunia & Sanfilippo, Antonio, 2017. "Analysis of the long-term solar potential for electricity generation in Qatar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1231-1246.
    16. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    17. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    18. Weir, Tony, 2018. "Renewable energy in the Pacific Islands: Its role and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 762-771.
    19. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    20. Al-Dousari, Ali & Al-Nassar, Waleed & Al-Hemoud, Ali & Alsaleh, Abeer & Ramadan, Ashraf & Al-Dousari, Noor & Ahmed, Modi, 2019. "Solar and wind energy: Challenges and solutions in desert regions," Energy, Elsevier, vol. 176(C), pages 184-194.
    21. Nematollahi, Omid & Hoghooghi, Hadi & Rasti, Mehdi & Sedaghat, Ahmad, 2016. "Energy demands and renewable energy resources in the Middle East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1172-1181.
    22. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    23. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    24. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    25. Carlos Méndez & Yusuf Bicer, 2019. "Qatar’s Wind Energy Potential with Associated Financial and Environmental Benefits for the Natural Gas Industry," Energies, MDPI, vol. 12(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    2. Hoffmann, Martha M. & Ansari, Dawud, 2019. "Simulating the potential of swarm grids for pre-electrified communities – A case study from Yemen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 289-302.
    3. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    4. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    5. Ahmad, Tanveer & Zhang, Dongdong, 2021. "Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 83-108.
    6. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    7. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    8. Pacheco, A. & Monteiro, J. & Santos, J. & Sequeira, C. & Nunes, J., 2022. "Energy transition process and community engagement on geographic islands: The case of Culatra Island (Ria Formosa, Portugal)," Renewable Energy, Elsevier, vol. 184(C), pages 700-711.
    9. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    10. Matallah, Siham & Zerigui, Khadidja & Matallah, Amal, 2024. "Renewable energy solutions to the lack of access to electricity in conflict-ridden countries: A case study of Yemen," Energy, Elsevier, vol. 296(C).
    11. Diemuodeke, E.O. & Addo, A. & Oko, C.O.C. & Mulugetta, Y. & Ojapah, M.M., 2019. "Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm," Renewable Energy, Elsevier, vol. 134(C), pages 461-477.
    12. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    13. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    14. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    15. Al-Shetwi, Ali Q. & Atawi, Ibrahem E. & Abuelrub, Ahmad & Hannan, M.A., 2023. "Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems," Technology in Society, Elsevier, vol. 75(C).
    16. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    17. Taghavifar, Hadi & Zomorodian, Zahra Sadat, 2021. "Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Valliyil Mohammed Aboobacker & Puthuveetil Razak Shanas & Subramanian Veerasingam & Ebrahim M. A. S. Al-Ansari & Fadhil N. Sadooni & Ponnumony Vethamony, 2021. "Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar," Energies, MDPI, vol. 14(4), pages 1-21, February.
    19. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    20. Ceran, Bartosz & Mielcarek, Agata & Hassan, Qusay & Teneta, Janusz & Jaszczur, Marek, 2021. "Aging effects on modelling and operation of a photovoltaic system with hydrogen storage," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:228-:d:469737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.