IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0473.html
   My bibliography  Save this article

Asymmetric loss function in product-level sales forecasting: An empirical comparison

Author

Listed:
  • Gogolev, Stepan

    (HSE university, Perm, Russsia)

  • Ozhegov, Evgeniy

    (HSE university, Saint Petersburg, Russia)

Abstract

In the paper we study the behavior of models estimated using asymmetric loss function for the prediction of product-level sales. The paper is focused on the deriving of a loss function from the newsvendor model where the cost of sales over- and underprediction are not equal. We describe the properties of the asymmetric loss function and validate its performance on transactional sales data. The results show that when costs of sales over- and underprediction are non-equal, the prediction function obtained using asymmetric loss leads to lower economic costs compared with symmetric one. Our findings suggest implementing this type of forecasting method to predict product-level sales in the retail and restaurant industries to better accommodate business goals when solving inventory planning tasks.

Suggested Citation

  • Gogolev, Stepan & Ozhegov, Evgeniy, 2023. "Asymmetric loss function in product-level sales forecasting: An empirical comparison," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 109-121.
  • Handle: RePEc:ris:apltrx:0473
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2023_70_109-121.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2013. "Oil price forecasting under asymmetric loss," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2371-2379, June.
    2. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    3. Jörg Döpke & Ulrich Fritsche & Boriss Siliverstovs, 2010. "Evaluating German business cycle forecasts under an asymmetric loss function," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-18.
    4. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.
    5. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    6. Maurice E. Schweitzer & Gérard P. Cachon, 2000. "Decision Bias in the Newsvendor Problem with a Known Demand Distribution: Experimental Evidence," Management Science, INFORMS, vol. 46(3), pages 404-420, March.
    7. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    8. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    2. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    3. George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
    4. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    5. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    6. Souza, Leonardo Rocha & Soares, Lacir Jorge, 2003. "Forecasting electricity load demand: analysis of the 2001 rationing period in Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 491, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    7. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    8. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    9. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2014. "The value of competitive information in forecasting FMCG retail product sales and the variable selection problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 738-748.
    10. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    11. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    12. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Empirical Study towards the Drivers of Sustainable Economic Growth in EU-28 Countries," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
    13. Youngho Kang & Byung-Yeon Kim, 2018. "Immigration and economic growth: do origin and destination matter?," Applied Economics, Taylor & Francis Journals, vol. 50(46), pages 4968-4984, October.
    14. Alcaraz, Carlo & Villalvazo, Sergio, 2017. "The effect of natural gas shortages on the Mexican economy," Energy Economics, Elsevier, vol. 66(C), pages 147-153.
    15. Thorsten Lehnert, 2019. "Asset pricing implications of good governance," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    16. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    17. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    18. Nam, Changwoo, 2016. "Impact of Corporate Tax Cuts on Corporate Investment," KDI Policy Forum 264, Korea Development Institute (KDI).
    19. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    20. Ilona Babenko & Benjamin Bennett & John M Bizjak & Jeffrey L Coles & Jason J Sandvik, 2023. "Clawback Provisions and Firm Risk," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 12(2), pages 191-239.
    21. Leopoldo Fergusson & Carlos Molina, 2020. "Facebook Causes Protests," HiCN Working Papers 323, Households in Conflict Network.

    More about this item

    Keywords

    demand estimation; loss function; accuracy metric; prediction; retail;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.