IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0249754.html
   My bibliography  Save this article

Prediction of air traffic delays: An agent-based model introducing refined parameter estimation methods

Author

Listed:
  • Chunzheng Wang
  • Minghua Hu
  • Lei Yang
  • Zheng Zhao

Abstract

We propose an agent-based model for predicting individual flight delays in an entire air traffic network. In contrast to previous work, more detailed parameter estimation methods were incorporated into the agent-based model, acting on the state transitions of agents. Specifically, a conditional probability model was proposed for modifying the expected departure time, which was used to indicate whether a flight had experienced the necessary waiting due to Ground Delay Programs (GDPs) or carrier-related reasons. Additionally, two random forest regression models were presented for estimating the turnaround time and the elapsed time of flight agents in the agent-based delay prediction model. The parameter models were trained and fitted using the flight data for 2017 in the United States. The performance of the delay prediction model was tested for thirty days with three types of delay levels (low, medium, and high), which were randomly selected from 2018. The experimental results showed that the average absolute error in the test days was 6.8 min, and the classification accuracy with a 15 min threshold for a two-hour forecast horizon was 89.5%. The performance of our model outperformed that of existing research. Additionally, the positive effect of introducing parameter models and the negative impact of increasing the prediction horizon on the prediction performance were further studied.

Suggested Citation

  • Chunzheng Wang & Minghua Hu & Lei Yang & Zheng Zhao, 2021. "Prediction of air traffic delays: An agent-based model introducing refined parameter estimation methods," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
  • Handle: RePEc:plo:pone00:0249754
    DOI: 10.1371/journal.pone.0249754
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249754
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0249754&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0249754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    2. Liu, Yulin & Liu, Yi & Hansen, Mark & Pozdnukhov, Alexey & Zhang, Danqing, 2019. "Using machine learning to analyze air traffic management actions: Ground delay program case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 80-95.
    3. Hao, Lu & Hansen, Mark, 2014. "Block time reliability and scheduled block time setting," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 98-111.
    4. Shervin AhmadBeygi & Amy Cohn & Marcial Lapp, 2010. "Decreasing airline delay propagation by re-allocating scheduled slack," IISE Transactions, Taylor & Francis Journals, vol. 42(7), pages 478-489.
    5. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijing Dong & Boyi Fan & Fan Li & Xuezhi Xu & Hong Sun & Weiwei Cao, 2023. "TCN-Informer-Based Flight Trajectory Prediction for Aircraft in the Approach Phase," Sustainability, MDPI, vol. 15(23), pages 1-20, November.
    2. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    2. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    3. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
    4. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    6. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    7. Weiwei Wu & Haoyu Zhang & Tao Feng & Frank Witlox, 2019. "A Network Modelling Approach to Flight Delay Propagation: Some Empirical Evidence from China," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    8. Lonzius, Christopher & Lange, Anne, 2024. "Aircraft routing clusters and their impact on airline delays," Journal of Air Transport Management, Elsevier, vol. 114(C).
    9. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    10. Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).
    11. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    12. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline schedule buffers and flight delays: A discrete model," Economics of Transportation, Elsevier, vol. 26.
    13. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    14. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    15. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    16. Eufrásio, Ana Beatriz R. & Eller, Rogéria A.G. & Oliveira, Alessandro V.M., 2021. "Are on-time performance statistics worthless? An empirical study of the flight scheduling strategies of Brazilian airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    17. van Schilt, Isabelle M. & van Kalker, Jonna & Lefter, Iulia & Kwakkel, Jan H. & Verbraeck, Alexander, 2024. "Buffer scheduling for improving on-time performance and connectivity with a multi-objective simulation–optimization model: A proof of concept for the airline industry," Journal of Air Transport Management, Elsevier, vol. 115(C).
    18. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.
    19. Liu, Ke & Zheng, Zhe & Zou, Bo & Hansen, Mark, 2023. "Airborne flight time: A comparative analysis between the U.S. and China," Journal of Air Transport Management, Elsevier, vol. 107(C).
    20. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0249754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.