IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v103y2022ics0969699722000643.html
   My bibliography  Save this article

Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models

Author

Listed:
  • Wang, Chunzheng
  • Hu, Minghua
  • Yang, Lei
  • Zhao, Zheng

Abstract

Flight block time (BT) is the time between gate departure and gate arrival. BT is difficult to predict because it depends on many latent variables such as airport layout, taxiing procedures, airspace status, and weather events. There is some increasing interest among aviation practitioners in machine learning techniques to help predict complex and nonlinear relationships. Among them, several machine learning methods have proved their significant advantages. However, recent research showed that these methods may not be able to generalize at different origin-destination (OD) pairs and periods (i.e. spatial-temporal scales), which challenges their further application in practice. The main goal of this paper is to improve the spatial-temporal generalization of the BT prediction models using the stacking method. We select four busy OD pairs in the National Airspace System as the cases and model BT prediction on individual OD pairs using data from two periods. Following seven typical machine learning methods, we first investigate their performance in different OD pairs and different periods. The results demonstrate that they also fail to generalize at spatial-temporal scales in the BT prediction. Then, we propose a stacking model to predict flight BT. Compared with the previous methods, our stacking method is able to achieve promising generalization at various spatial-temporal instances. In addition, we analyze the feature importance on each OD pair and find that they may also vary with periods. In order to improve the computational efficiency, we also develop lightweight BT prediction models that are trained with fewer but more important features. Although they show promising prospects in the reduction of computational costs, analysts should be cautious since the feature importance may vary with periods and the neglected features with lower importance may play a key role in the real world.

Suggested Citation

  • Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jaitra:v:103:y:2022:i:c:s0969699722000643
    DOI: 10.1016/j.jairtraman.2022.102244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722000643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    2. Coy, Steven, 2006. "A global model for estimating the block time of commercial passenger aircraft," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 300-305.
    3. Tu, Yufeng & Ball, Michael O. & Jank, Wolfgang S., 2008. "Estimating Flight Departure Delay DistributionsA Statistical Approach With Long-Term Trend and Short-Term Pattern," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 112-125, March.
    4. Lambelho, Miguel & Mitici, Mihaela & Pickup, Simon & Marsden, Alan, 2020. "Assessing strategic flight schedules at an airport using machine learning-based flight delay and cancellation predictions," Journal of Air Transport Management, Elsevier, vol. 82(C).
    5. Lavanya Marla & Bo Vaaben & Cynthia Barnhart, 2017. "Integrated Disruption Management and Flight Planning to Trade Off Delays and Fuel Burn," Transportation Science, INFORMS, vol. 51(1), pages 88-111, February.
    6. Santos, Bruno F. & Wormer, Maarten M.E.C. & Achola, Thomas A.O. & Curran, Richard, 2017. "Airline delay management problem with airport capacity constraints and priority decisions," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 34-44.
    7. Wang, Yanjun & Zhou, Ying & Hansen, Mark & Chin, Christopher, 2019. "Scheduled block time setting and on-time performance of U.S. and Chinese airlines—A comparative analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 825-843.
    8. Diana, Tony, 2018. "Can machines learn how to forecast taxi-out time? A comparison of predictive models applied to the case of Seattle/Tacoma International Airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 149-164.
    9. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    10. Kim, Myung Suk, 2016. "Analysis of short-term forecasting for flight arrival time," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 35-41.
    11. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    12. Vinayak Deshpande & Mazhar Arıkan, 2012. "The Impact of Airline Flight Schedules on Flight Delays," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 423-440, July.
    13. Narciso, Mercedes E. & Piera, Miquel A., 2015. "Robust gate assignment procedures from an airport management perspective," Omega, Elsevier, vol. 50(C), pages 82-95.
    14. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    15. Hao, Lu & Hansen, Mark, 2014. "Block time reliability and scheduled block time setting," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 98-111.
    16. Truong, Dothang, 2021. "Using causal machine learning for predicting the risk of flight delays in air transportation," Journal of Air Transport Management, Elsevier, vol. 91(C).
    17. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    18. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    19. Wong, Jinn-Tsai & Tsai, Shy-Chang, 2012. "A survival model for flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 5-11.
    20. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    21. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
    2. Khan, Waqar Ahmed & Chung, Sai-Ho & Eltoukhy, Abdelrahman E.E. & Khurshid, Faisal, 2024. "A novel parallel series data-driven model for IATA-coded flight delays prediction and features analysis," Journal of Air Transport Management, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    2. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
    3. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    4. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    5. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    6. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    7. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    8. Liu, Ke & Zheng, Zhe & Zou, Bo & Hansen, Mark, 2023. "Airborne flight time: A comparative analysis between the U.S. and China," Journal of Air Transport Management, Elsevier, vol. 107(C).
    9. Zhe Zheng & Wenbin Wei & Bo Zou & Minghua Hu, 2020. "How Late Does Your Flight Depart? A Quantile Regression Approach for a Chinese Case Study," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    10. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    11. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    12. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline schedule buffers and flight delays: A discrete model," Economics of Transportation, Elsevier, vol. 26.
    13. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Eufrásio, Ana Beatriz R. & Eller, Rogéria A.G. & Oliveira, Alessandro V.M., 2021. "Are on-time performance statistics worthless? An empirical study of the flight scheduling strategies of Brazilian airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    15. Chen, Gong & Fricke, Hartmut & Okhrin, Ostap & Rosenow, Judith, 2024. "Flight delay propagation inference in air transport networks using the multilayer perceptron," Journal of Air Transport Management, Elsevier, vol. 114(C).
    16. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    17. Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    18. Diana, Tony, 2018. "Can machines learn how to forecast taxi-out time? A comparison of predictive models applied to the case of Seattle/Tacoma International Airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 149-164.
    19. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    20. Kim, Myeonghyeon & Park, Sunwook, 2021. "Airport and route classification by modelling flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:103:y:2022:i:c:s0969699722000643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.