IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v107y2023ics0969699722001600.html
   My bibliography  Save this article

Airborne flight time: A comparative analysis between the U.S. and China

Author

Listed:
  • Liu, Ke
  • Zheng, Zhe
  • Zou, Bo
  • Hansen, Mark

Abstract

Actual airborne time (AAT) is the time between actual wheels-off and actual wheels-on of a flight. Given the ever-growing demand for air travel and growing flight delays, understanding the behavior of AAT is increasingly important for on time performance and delay propagation. Of particular interest is the comparison on AAT in different countries with varying air route structures, air traffic management systems, weather, and geography. This paper performs the first comparative empirical analysis of AAT behavior, focusing on the U.S. and China. The focus is on how AAT is affected by origin-destination (OD) distance, the possible pressure to reduce AAT from other parts of flight operations, hub status of departure/arrival airports, enroute and terminal traffic conditions, and convective weather. Econometric models are developed to quantify the impacts of factors on AAT behavior in China and the U.S., separately. The estimation results show that in both countries AAT is highly correlated with OD distance. Flight time in China is longer than that in the U.S. given the same OD distance which indicates a low effective speed may be the result of a low aircraft speed, or due to the flight experiencing metering, rerouting, holding or vectoring in Chinese airspace. In addition, we find that a flight has limited capability to make up for pre-departure delay. Sensitivity analysis of AAT to flight length and aircraft utilization is further conducted. Given the more abundant civil airspace, flexible routing networks, and efficient air traffic flow management (ATFM) procedures, we performed a counterfactual analysis to investigate how Chinese AATs would change if they were governed by the U.S. model. We find that this would result in significant efficiency gains for the Chinese air traffic system. On average, 13Â min of AAT per flight would be saved. Systemwide fuel saving would amount to 326 million gallons with CO2 emission reduction of 2.7 million tons and direct airline operating cost saving of over $1.3 billion in 2016.

Suggested Citation

  • Liu, Ke & Zheng, Zhe & Zou, Bo & Hansen, Mark, 2023. "Airborne flight time: A comparative analysis between the U.S. and China," Journal of Air Transport Management, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:jaitra:v:107:y:2023:i:c:s0969699722001600
    DOI: 10.1016/j.jairtraman.2022.102341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722001600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brueckner, Jan K., 2005. "Internalization of airport congestion: A network analysis," International Journal of Industrial Organization, Elsevier, vol. 23(7-8), pages 599-614, September.
    2. Brueckner, Jan K. & Van Dender, Kurt, 2008. "Atomistic congestion tolls at concentrated airports? Seeking a unified view in the internalization debate," Journal of Urban Economics, Elsevier, vol. 64(2), pages 288-295, September.
    3. Zou, Bo & Hansen, Mark, 2012. "Impact of operational performance on air carrier cost structure: Evidence from US airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 1032-1048.
    4. Hao, Lu & Hansen, Mark, 2014. "Block time reliability and scheduled block time setting," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 98-111.
    5. Ryerson, Megan S. & Hansen, Mark & Bonn, James, 2014. "Time to burn: Flight delay, terminal efficiency, and fuel consumption in the National Airspace System," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 286-298.
    6. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    7. Britto, Rodrigo & Dresner, Martin & Voltes, Augusto, 2012. "The impact of flight delays on passenger demand and societal welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 460-469.
    8. Brueckner, Jan K, 2002. "Internalization of airport congestion," Journal of Air Transport Management, Elsevier, vol. 8(3), pages 141-147.
    9. Jan K. Brueckner, 2002. "Airport Congestion When Carriers Have Market Power," American Economic Review, American Economic Association, vol. 92(5), pages 1357-1375, December.
    10. Christopher Mayer & Todd Sinai, 2003. "Network Effects, Congestion Externalities, and Air Traffic Delays: Or Why Not All Delays Are Evil," American Economic Review, American Economic Association, vol. 93(4), pages 1194-1215, September.
    11. Zou, Bo & Hansen, Mark, 2014. "Flight delay impact on airfare and flight frequency: A comprehensive assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 54-74.
    12. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    13. Coy, Steven, 2006. "A global model for estimating the block time of commercial passenger aircraft," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 300-305.
    14. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    15. Vinayak Deshpande & Mazhar Arıkan, 2012. "The Impact of Airline Flight Schedules on Flight Delays," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 423-440, July.
    16. Liu, Yulin & Hansen, Mark & Ball, Michael O. & Lovell, David J., 2021. "Causal analysis of flight en route inefficiency," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 91-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    2. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    3. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
    4. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Fageda, Xavier & Flores-Fillol, Ricardo, 2016. "How do airlines react to airport congestion? The role of networks," Regional Science and Urban Economics, Elsevier, vol. 56(C), pages 73-81.
    6. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    7. Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).
    8. Bubalo, Branko, 2021. "Airport Capacity and Performance in Europe - A study of transport economics, service quality and sustainability," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 229442, September.
    9. Calzada, Joan & Fageda, Xavier, 2023. "Airport dominance, route network design and flight delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    10. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    11. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    12. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    13. Noto, Claudio, 2020. "Airport slots, secondary trading, and congestion pricing at an airport with a dominant network airline," Research in Transportation Economics, Elsevier, vol. 79(C).
    14. Lonzius, Christopher & Lange, Anne, 2024. "Aircraft routing clusters and their impact on airline delays," Journal of Air Transport Management, Elsevier, vol. 114(C).
    15. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    16. Rupp, Nicholas G., 2009. "Do carriers internalize congestion costs? Empirical evidence on the internalization question," Journal of Urban Economics, Elsevier, vol. 65(1), pages 24-37, January.
    17. Santos, Georgina & Robin, Maël, 2010. "Determinants of delays at European airports," Transportation Research Part B: Methodological, Elsevier, vol. 44(3), pages 392-403, March.
    18. Branko Bubalo, 2021. "Airport Capacity and Performance in Europe -- A study of transport economics, service quality and sustainability," Papers 2102.02379, arXiv.org.
    19. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline schedule buffers and flight delays: A discrete model," Economics of Transportation, Elsevier, vol. 26.
    20. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:107:y:2023:i:c:s0969699722001600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.