IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v131y2019icp80-95.html
   My bibliography  Save this article

Using machine learning to analyze air traffic management actions: Ground delay program case study

Author

Listed:
  • Liu, Yulin
  • Liu, Yi
  • Hansen, Mark
  • Pozdnukhov, Alexey
  • Zhang, Danqing

Abstract

We model the impact of weather and arrival demand on ground delay program (GDP) incidence. We use Support Vector Machine (SVM) to analyze how regional convective weather affects GDP incidence and find the impact depends on both distance and direction of convective activity from the airport. We then train and compare the performance of logistic regression (LR) and random forest (RF) in predicting GDP incidence using an SVM-generated regional weather variable, local weather and arrival demand. Generally, RF outperforms LR. Convective weather is the most important factor in predicting GDP incidence at Atlanta International Airport (ATL), while arrival demand has greater impact for the other airports studied. We also examined model transferability across different airports. Lastly, we build GDP duration prediction models to enable a user to assess how long a GDP is likely to continue, if it is in effect in a given hour.

Suggested Citation

  • Liu, Yulin & Liu, Yi & Hansen, Mark & Pozdnukhov, Alexey & Zhang, Danqing, 2019. "Using machine learning to analyze air traffic management actions: Ground delay program case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 80-95.
  • Handle: RePEc:eee:transe:v:131:y:2019:i:c:p:80-95
    DOI: 10.1016/j.tre.2019.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518312444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    2. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    3. Michael O. Ball & Robert Hoffman & Amedeo R. Odoni & Ryan Rifkin, 2003. "A Stochastic Integer Program with Dual Network Structure and Its Application to the Ground-Holding Problem," Operations Research, INFORMS, vol. 51(1), pages 167-171, February.
    4. Avijit Mukherjee & Mark Hansen & Shon Grabbe, 2012. "Ground delay program planning under uncertainty in airport capacity," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(6), pages 611-628, June.
    5. Michael O. Ball & Robert Hoffman & Avijit Mukherjee, 2010. "Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle," Transportation Science, INFORMS, vol. 44(1), pages 1-14, February.
    6. Kan Chang & Ken Howard & Rick Oiesen & Lara Shisler & Midori Tanino & Michael C. Wambsganss, 2001. "Enhancements to the FAA Ground-Delay Program Under Collaborative Decision Making," Interfaces, INFORMS, vol. 31(1), pages 57-76, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    4. Chunzheng Wang & Minghua Hu & Lei Yang & Zheng Zhao, 2021. "Prediction of air traffic delays: An agent-based model introducing refined parameter estimation methods," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
    5. Sun, Xuting & Kuo, Yong-Hong & Xue, Weili & Li, Yanzhi, 2024. "Technology-driven logistics and supply chain management for societal impacts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    6. Rott, Julian & König, Fabian & Häfke, Hannes & Schmidt, Michael & Böhm, Markus & Kratsch, Wolfgang & Krcmar, Helmut, 2023. "Process Mining for resilient airport operations: A case study of Munich Airport’s turnaround process," Journal of Air Transport Management, Elsevier, vol. 112(C).
    7. Bojia Ye & Bo Liu & Yong Tian & Lili Wan, 2020. "A Methodology for Predicting Aggregate Flight Departure Delays in Airports Based on Supervised Learning," Sustainability, MDPI, vol. 12(7), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liu & Mark Hansen, 2016. "Incorporating Predictability Into Cost Optimization for Ground Delay Programs," Transportation Science, INFORMS, vol. 50(1), pages 132-149, February.
    2. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    3. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    4. Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    5. Avijit Mukherjee & Mark Hansen & Shon Grabbe, 2012. "Ground delay program planning under uncertainty in airport capacity," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(6), pages 611-628, June.
    6. Alexander S. Estes & Michael O. Ball, 2021. "Monge Properties, Optimal Greedy Policies, and Policy Improvement for the Dynamic Stochastic Transportation Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 785-807, May.
    7. Alexander Estes & David J. Lovell & Michael O. Ball, 2019. "Unsupervised prototype reduction for data exploration and an application to air traffic management initiatives," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 467-510, December.
    8. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    9. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    10. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    11. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    12. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    13. Michael O. Ball & Robert Hoffman & Avijit Mukherjee, 2010. "Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle," Transportation Science, INFORMS, vol. 44(1), pages 1-14, February.
    14. Guglielmo Lulli & Amedeo Odoni, 2007. "The European Air Traffic Flow Management Problem," Transportation Science, INFORMS, vol. 41(4), pages 431-443, November.
    15. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    16. Zhang, Yu, 2008. "Real-time Inter-modal Strategies for Airline Schedule Perturbation Recovery and Airport Congestion Mitigation under Collaborative Decision Making (CDM)," University of California Transportation Center, Working Papers qt2k44c9tx, University of California Transportation Center.
    17. Yi Yang & Shangwen Yang & Ming Tong & Ying Xu, 2023. "RETRACTED ARTICLE: A novel dynamic en-route and slot allocation method based on receding horizon control," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-20, March.
    18. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    19. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    20. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:131:y:2019:i:c:p:80-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.