IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v115y2024ics0969699723001783.html
   My bibliography  Save this article

Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach

Author

Listed:
  • Abdelghany, Ahmed
  • Abdelghany, Khaled
  • Guzhva, Vitaly S.

Abstract

The development of flight block time schedules for future airline operations is a critical aspect of the schedule development process. It involves determining the appropriate gate-to-gate time for each flight to optimize on-time performance and ensure efficient utilization of flight resources. This article presents a modeling framework that addresses the airlines' scheduled block time (SBT) design problem. The framework employs a novel data-driven optimization model that incorporates reliability measures at both the flight and schedule levels. This approach enables airline schedule planners to assess the relationship between the allocated SBT for each flight and the overall schedule reliability, and make informed decisions regarding the trade-off between schedule reliability and operational costs. Experiments show that the proposed methodology outperforms real-world SBT plans implemented by two major U.S. airlines, demonstrating its superiority. The results of this comparison indicate that the developed framework could assist airlines in improving reliability while deploying the same block time budget or in eliminating unnecessary slack in their schedules while achieving their targeted reliability, resulting in significant cost savings.

Suggested Citation

  • Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jaitra:v:115:y:2024:i:c:s0969699723001783
    DOI: 10.1016/j.jairtraman.2023.102535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699723001783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    2. Coy, Steven, 2006. "A global model for estimating the block time of commercial passenger aircraft," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 300-305.
    3. Abdelghany, Khaled & Abdelghany, Ahmed & Niznik, Tim, 2007. "Managing severe airspace flow programs: The Airlines’ side of the problem," Journal of Air Transport Management, Elsevier, vol. 13(6), pages 329-337.
    4. Christopher Mayer & Todd Sinai, 2003. "Network Effects, Congestion Externalities, and Air Traffic Delays: Or Why Not All Delays Are Evil," American Economic Review, American Economic Association, vol. 93(4), pages 1194-1215, September.
    5. Wang, Yanjun & Zhou, Ying & Hansen, Mark & Chin, Christopher, 2019. "Scheduled block time setting and on-time performance of U.S. and Chinese airlines—A comparative analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 825-843.
    6. Hazledine, Tim & Bunker, Rory, 2013. "Airport size and travel time," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 17-23.
    7. PeCoy, Michael D. & Redmond, Michael A., 2023. "Flight reliability during periods of high uncertainty," Journal of Air Transport Management, Elsevier, vol. 106(C).
    8. Kim, Myeonghyeon & Sohn, Jeongwoong, 2022. "Passenger, airline, and policy responses to the COVID-19 crisis: The case of South Korea," Journal of Air Transport Management, Elsevier, vol. 98(C).
    9. Abdelghany, Khaled F. & S. Shah, Sharmila & Raina, Sidhartha & Abdelghany, Ahmed F., 2004. "A model for projecting flight delays during irregular operation conditions," Journal of Air Transport Management, Elsevier, vol. 10(6), pages 385-394.
    10. Vinayak Deshpande & Mazhar Arıkan, 2012. "The Impact of Airline Flight Schedules on Flight Delays," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 423-440, July.
    11. Milind Sohoni & Yu-Ching Lee & Diego Klabjan, 2011. "Robust Airline Scheduling Under Block-Time Uncertainty," Transportation Science, INFORMS, vol. 45(4), pages 451-464, November.
    12. Liu, Ke & Zheng, Zhe & Zou, Bo & Hansen, Mark, 2023. "Airborne flight time: A comparative analysis between the U.S. and China," Journal of Air Transport Management, Elsevier, vol. 107(C).
    13. Hao, Lu & Hansen, Mark, 2014. "Block time reliability and scheduled block time setting," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 98-111.
    14. Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).
    15. Shervin AhmadBeygi & Amy Cohn & Marcial Lapp, 2010. "Decreasing airline delay propagation by re-allocating scheduled slack," IISE Transactions, Taylor & Francis Journals, vol. 42(7), pages 478-489.
    16. Macilree, John & Duval, David Timothy, 2020. "Aeropolitics in a post-COVID-19 world," Journal of Air Transport Management, Elsevier, vol. 88(C).
    17. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    18. Wong, Jinn-Tsai & Tsai, Shy-Chang, 2012. "A survival model for flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 5-11.
    19. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    2. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    3. Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).
    4. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Liu, Ke & Zheng, Zhe & Zou, Bo & Hansen, Mark, 2023. "Airborne flight time: A comparative analysis between the U.S. and China," Journal of Air Transport Management, Elsevier, vol. 107(C).
    6. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    7. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    8. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    9. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline schedule buffers and flight delays: A discrete model," Economics of Transportation, Elsevier, vol. 26.
    10. Eufrásio, Ana Beatriz R. & Eller, Rogéria A.G. & Oliveira, Alessandro V.M., 2021. "Are on-time performance statistics worthless? An empirical study of the flight scheduling strategies of Brazilian airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    11. van Schilt, Isabelle M. & van Kalker, Jonna & Lefter, Iulia & Kwakkel, Jan H. & Verbraeck, Alexander, 2024. "Buffer scheduling for improving on-time performance and connectivity with a multi-objective simulation–optimization model: A proof of concept for the airline industry," Journal of Air Transport Management, Elsevier, vol. 115(C).
    12. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    13. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    14. Erdem, Furkan & Bilgiç, Taner, 2024. "Airline delay propagation: Estimation and modeling in daily operations," Journal of Air Transport Management, Elsevier, vol. 115(C).
    15. Hao, Lu & Hansen, Mark, 2014. "Block time reliability and scheduled block time setting," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 98-111.
    16. Lonzius, Christopher & Lange, Anne, 2024. "Aircraft routing clusters and their impact on airline delays," Journal of Air Transport Management, Elsevier, vol. 114(C).
    17. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    18. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    19. Khan, Waqar Ahmed & Chung, Sai-Ho & Eltoukhy, Abdelrahman E.E. & Khurshid, Faisal, 2024. "A novel parallel series data-driven model for IATA-coded flight delays prediction and features analysis," Journal of Air Transport Management, Elsevier, vol. 114(C).
    20. Chunzheng Wang & Minghua Hu & Lei Yang & Zheng Zhao, 2021. "Prediction of air traffic delays: An agent-based model introducing refined parameter estimation methods," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:115:y:2024:i:c:s0969699723001783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.