IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130516.html
   My bibliography  Save this article

Change in the Green-Up Dates for Quercus mongolica in Northeast China and Its Climate-Driven Mechanism from 1962 to 2012

Author

Listed:
  • Deqin Fan
  • Wenquan Zhu
  • Zhoutao Zheng
  • Donghai Zhang
  • Yaozhong Pan
  • Nan Jiang
  • Xiafei Zhou

Abstract

The currently available studies on the green-up date were mainly based on ground observations and/or satellite data, and few model simulations integrated with wide coverage satellite data have been reported at large scale over a long time period (i.e., > 30 years). In this study, we combined phenology mechanism model, long-term climate data and synoptic scale remote sensing data to investigate the change in the green-up dates for Quercus mongolica over 33 weather stations in Northeast China and its climate-driven mechanism during 1962-2012. The results indicated that the unified phenology model can be well parameterized with the satellite derived green-up dates. The optimal daily mean temperature for chilling effect was between -27°C and 1°C for Q. mongolica in Northeast China, while the optimal daily mean temperature for forcing effect was above -3°C. The green-up dates for Q. mongolica across Northeast China showed a delayed latitudinal gradient of 2.699 days degree-1, with the earliest date on the Julian day 93 (i.e., 3th April) in the south and the latest date on the Julian day 129 (i.e., 9th May) in the north. The green-up date for Q. mongolica in Northeast China has advanced 6.6 days (1.3 days decade-1) from 1962 to 2012. With the prevailing warming in autumn, winter and spring in Northeast China during the past 51 years, the chilling effect for Q. mongolica has been weakened, while the forcing effect has been enhanced. The advancing trend in the green-up dates for Q. mongolica implied that the enhanced forcing effect to accelerate green-up was stronger than the weakened chilling effect to hold back green-up while the changes of both effects were caused by the warming climate.

Suggested Citation

  • Deqin Fan & Wenquan Zhu & Zhoutao Zheng & Donghai Zhang & Yaozhong Pan & Nan Jiang & Xiafei Zhou, 2015. "Change in the Green-Up Dates for Quercus mongolica in Northeast China and Its Climate-Driven Mechanism from 1962 to 2012," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0130516
    DOI: 10.1371/journal.pone.0130516
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130516
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130516&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.