IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v2y2020i3p14-266d389754.html
   My bibliography  Save this article

Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin

Author

Listed:
  • Md Abul Ehsan Bhuiyan

    (Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269-3088, USA)

  • Feifei Yang

    (Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269-3088, USA)

  • Nishan Kumar Biswas

    (Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA)

  • Saiful Haque Rahat

    (Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45220, USA)

  • Tahneen Jahan Neelam

    (Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA)

Abstract

The Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) Level 3 estimates rainfall from passive microwave sensors onboard satellites that are associated with several uncertainty sources such as sensor calibration, retrieval errors, and orographic effects. This study aims to provide a comprehensive investigation of multiple machine learning (ML) techniques (Random Forest, and Neural Networks), to stochastically generate an error-corrected improved IMERG precipitation product at a daily time scale and 0.1°-degree spatial resolution over the Brahmaputra river basin. In this study, we used the operational IMERG-Late Run version 06 product along with several meteorological and land surface parameters (elevation, soil type, land type, soil moisture, and daily maximum and minimum temperature) to produce an improved precipitation product in the Brahmaputra basin. We trained, tested, and optimized ML algorithms using 4 years (from 2015 through 2019) of reference rainfall data derived from the rain gauge. The ML generated precipitation product exhibited improved systematic and random error statistics for the study area, which is a strong indication for using the proposed algorithms in retrieving precipitation across the globe. We conclude that the proposed ML-based ensemble framework has the potential to quantify and correct the error sources for improving and promoting the use of satellite-based precipitation estimates for water resources applications.

Suggested Citation

  • Md Abul Ehsan Bhuiyan & Feifei Yang & Nishan Kumar Biswas & Saiful Haque Rahat & Tahneen Jahan Neelam, 2020. "Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin," Forecasting, MDPI, vol. 2(3), pages 1-19, July.
  • Handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:14-266:d:389754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/2/3/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/2/3/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dougherty, Mark S. & Cobbett, Mark R., 1997. "Short-term inter-urban traffic forecasts using neural networks," International Journal of Forecasting, Elsevier, vol. 13(1), pages 21-31, March.
    2. Faisal Hossain & Nitin Katiyar & Yang Hong & Aaron Wolf, 2007. "The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 199-210, November.
    3. Feifei Yang & David W. Wanik & Diego Cerrai & Md Abul Ehsan Bhuiyan & Emmanouil N. Anagnostou, 2020. "Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khurshid Jahan & Anwar Zahid & Md Abul Ehsan Bhuiyan & Iqbal Ali, 2022. "A Resilient and Nature-Based Drinking Water Supply Source for Saline and Arsenic Prone Coastal Aquifers of the Bengal Delta," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    2. Minxue He & Haksu Lee, 2021. "Advances in Hydrological Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-3, July.
    3. Khurshid Jahan & Soni M. Pradhanang & Md Abul Ehsan Bhuiyan, 2021. "Surface Runoff Responses to Suburban Growth: An Integration of Remote Sensing, GIS, and Curve Number," Land, MDPI, vol. 10(5), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo Han & Steven Burian & J. Shepherd, 2011. "Assessment of satellite-based rainfall estimates in urban areas in different geographic and climatic regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 733-747, March.
    2. Zhanguo Song & Yanyong Guo & Yao Wu & Jing Ma, 2019. "Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
    3. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Hongchen Li & Zhong Yang & Jiaming Han & Shangxiang Lai & Qiuyan Zhang & Chi Zhang & Qianhui Fang & Guoxiong Hu, 2020. "TL-Net: A Novel Network for Transmission Line Scenes Classification," Energies, MDPI, vol. 13(15), pages 1-15, July.
    5. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    6. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Basu, Debasis & Maitra, Swati Roy & Maitra, Bhargab, 2006. "Modelling passenger car equivalency at an urban midblock using stream speed as measure of equivalence," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 75-87.
    8. Tara C. Walsh & David W. Wanik & Emmanouil N. Anagnostou & Jonathan E. Mellor, 2020. "Estimated Time to Restoration of Hurricane Sandy in a Future Climate," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    9. Salvo, G. & Amato, G. & Zito, Pietro, 2007. "Bus speed estimation by neural networks to improve the automatic fleet management," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 93-104.
    10. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    11. Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Mahmood, Asif & Hossain, Faisal, 2017. "Feasibility of managed domestic rainwater harvesting in South Asian rural areas using remote sensing," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 157-168.
    13. Gencay, Ramazan & Selcuk, Faruk, 2001. "Software reviews," International Journal of Forecasting, Elsevier, vol. 17(2), pages 305-317.
    14. Wang, Wei & Zhang, Hanyu & Li, Tong & Guo, Jianhua & Huang, Wei & Wei, Yun & Cao, Jinde, 2020. "An interpretable model for short term traffic flow prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 264-278.
    15. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Feifei Yang & Diego Cerrai & Emmanouil N. Anagnostou, 2021. "The Effect of Lead-Time Weather Forecast Uncertainty on Outage Prediction Modeling," Forecasting, MDPI, vol. 3(3), pages 1-16, July.
    17. He, Silu & Luo, Qinyao & Du, Ronghua & Zhao, Ling & He, Guangjun & Fu, Han & Li, Haifeng, 2023. "STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    18. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    19. Olukunle O. Owolabi & Deborah A. Sunter, 2022. "Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages," Energies, MDPI, vol. 15(6), pages 1-22, March.
    20. Kirby, Howard R. & Watson, Susan M. & Dougherty, Mark S., 1997. "Should we use neural networks or statistical models for short-term motorway traffic forecasting?," International Journal of Forecasting, Elsevier, vol. 13(1), pages 43-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:14-266:d:389754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.