IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v13y1997i1p43-50.html
   My bibliography  Save this article

Should we use neural networks or statistical models for short-term motorway traffic forecasting?

Author

Listed:
  • Kirby, Howard R.
  • Watson, Susan M.
  • Dougherty, Mark S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Kirby, Howard R. & Watson, Susan M. & Dougherty, Mark S., 1997. "Should we use neural networks or statistical models for short-term motorway traffic forecasting?," International Journal of Forecasting, Elsevier, vol. 13(1), pages 43-50, March.
  • Handle: RePEc:eee:intfor:v:13:y:1997:i:1:p:43-50
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(96)00699-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dougherty, Mark S. & Cobbett, Mark R., 1997. "Short-term inter-urban traffic forecasts using neural networks," International Journal of Forecasting, Elsevier, vol. 13(1), pages 21-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaac Oyeyemi Olayode & Lagouge Kwanda Tartibu & Modestus O. Okwu & Alessandro Severino, 2021. "Comparative Traffic Flow Prediction of a Heuristic ANN Model and a Hybrid ANN-PSO Model in the Traffic Flow Modelling of Vehicles at a Four-Way Signalized Road Intersection," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    2. Lunacek, Monte & Williams, Lindy & Severino, Joseph & Ficenec, Karen & Ugirumurera, Juliette & Eash, Matthew & Ge, Yanbo & Phillips, Caleb, 2021. "A data-driven operational model for traffic at the Dallas Fort Worth International Airport," Journal of Air Transport Management, Elsevier, vol. 94(C).
    3. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    4. Gencay, Ramazan & Selcuk, Faruk, 2001. "Software reviews," International Journal of Forecasting, Elsevier, vol. 17(2), pages 305-317.
    5. Wang, Wei & Zhang, Hanyu & Li, Tong & Guo, Jianhua & Huang, Wei & Wei, Yun & Cao, Jinde, 2020. "An interpretable model for short term traffic flow prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 264-278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanguo Song & Yanyong Guo & Yao Wu & Jing Ma, 2019. "Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
    2. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    3. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    4. Basu, Debasis & Maitra, Swati Roy & Maitra, Bhargab, 2006. "Modelling passenger car equivalency at an urban midblock using stream speed as measure of equivalence," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 75-87.
    5. Salvo, G. & Amato, G. & Zito, Pietro, 2007. "Bus speed estimation by neural networks to improve the automatic fleet management," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 93-104.
    6. Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Gencay, Ramazan & Selcuk, Faruk, 2001. "Software reviews," International Journal of Forecasting, Elsevier, vol. 17(2), pages 305-317.
    8. Wang, Wei & Zhang, Hanyu & Li, Tong & Guo, Jianhua & Huang, Wei & Wei, Yun & Cao, Jinde, 2020. "An interpretable model for short term traffic flow prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 264-278.
    9. He, Silu & Luo, Qinyao & Du, Ronghua & Zhao, Ling & He, Guangjun & Fu, Han & Li, Haifeng, 2023. "STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    10. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    11. Md Abul Ehsan Bhuiyan & Feifei Yang & Nishan Kumar Biswas & Saiful Haque Rahat & Tahneen Jahan Neelam, 2020. "Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin," Forecasting, MDPI, vol. 2(3), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:13:y:1997:i:1:p:43-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.