IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007567.html
   My bibliography  Save this article

A traffic state recognition model based on feature map and deep learning

Author

Listed:
  • Wang, Chun
  • Zhang, Weihua
  • Wu, Cong
  • Hu, Heng
  • Ding, Heng
  • Zhu, Wenjia

Abstract

Real-time and accurate traffic state identification can provide reference for urban traffic control and guidance. Due to the randomness and complexity of traffic flow, it is difficult to identify the traffic state accurately. The existing researches mainly adopted traffic state feature vectors and machine learning to identify the traffic state. Few studies attempted to use the feature map and deep learning for traffic state recognition. Therefore, this paper proposes a traffic state recognition model based on the traffic state feature map and deep learning. The feature map is a chromatogram form of digital traffic state feature vector. And the deep learning has strong predictive performance in image identification. In the model, the road traffic state feature vector is extracted from the vehicle trajectory data, and the Gram Angle Field (GAF) is adopted to transform the feature vector into feature map. Then, the deep learning algorithm is utilized in traffic state offline classification and online recognition. In the offline training phase, the historical vehicle trajectory data and the DeepCluster algorithm are used to establish the mapping relationship between the feature maps and the traffic states. In the online identification stage, the real-time vehicle trajectory data and CoAtNet algorithm are utilized to identify the current traffic state. In experiments, the proposed model is compared with the Convolutional Neural Network (CNN), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) models using the open vehicle trajectory data of Shanghai North Cross Channel. The results showed that the proposed model achieved the best performance with the accuracy of 92.06% and could provide support for road traffic control and guidance.

Suggested Citation

  • Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007567
    DOI: 10.1016/j.physa.2022.128198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007567
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    2. Sun, Qiuxia & Sun, Yixin & Sun, Lu & Li, Qing & Zhao, Jianli & Zhang, Yu & He, Hao, 2019. "Research on traffic congestion characteristics of city business circles based on TPI data: The case of Qingdao, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Leo Tišljarić & Tonči Carić & Borna Abramović & Tomislav Fratrović, 2020. "Traffic State Estimation and Classification on Citywide Scale Using Speed Transition Matrices," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    4. Tang, Jinjun & Bi, Wei & Liu, Fang & Zhang, Wenhui, 2021. "Exploring urban travel patterns using density-based clustering with multi-attributes from large-scaled vehicle trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Yang Liu & Xuedong Yan & Yun Wang & Zhuo Yang & Jiawei Wu, 2017. "Grid Mapping for Spatial Pattern Analyses of Recurrent Urban Traffic Congestion Based on Taxi GPS Sensing Data," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    6. Dougherty, Mark S. & Cobbett, Mark R., 1997. "Short-term inter-urban traffic forecasts using neural networks," International Journal of Forecasting, Elsevier, vol. 13(1), pages 21-31, March.
    7. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    8. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    9. Toan, Trinh Dinh & Wong, Y.D., 2021. "Fuzzy logic-based methodology for quantification of traffic congestion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. Zhang, Kunpeng & Feng, Xiaoliang & Jia, Ning & Zhao, Liang & He, Zhengbing, 2022. "TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    11. Jie Cao & Zhiyi Fang & Guannan Qu & Hongyu Sun & Dan Zhang, 2017. "An accurate traffic classification model based on support vector machines," International Journal of Network Management, John Wiley & Sons, vol. 27(1), January.
    12. Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    2. Jinrui Zang & Pengpeng Jiao & Sining Liu & Xi Zhang & Guohua Song & Lei Yu, 2023. "Identifying Traffic Congestion Patterns of Urban Road Network Based on Traffic Performance Index," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    3. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    4. Zhang, Jie & Song, Chunyue & Cao, Shan & Zhang, Chun, 2023. "FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    6. Yu, Yi & Cui, Yanlei & Zeng, Jiaqi & He, Chunguang & Wang, Dianhai, 2022. "Identifying traffic clusters in urban networks based on graph theory using license plate recognition data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    7. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Shen, Huitao & Zheng, Liang & Zhang, Kunpeng & Li, Changlin, 2022. "Joint prediction of zone-based and OD-based passenger demands with a novel generative adversarial network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. Čičić, Mladen & Johansson, Karl Henrik, 2022. "Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 212-236.
    11. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    12. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    13. Basu, Debasis & Maitra, Swati Roy & Maitra, Bhargab, 2006. "Modelling passenger car equivalency at an urban midblock using stream speed as measure of equivalence," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 75-87.
    14. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    15. Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 0. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 0, pages 1-41.
    16. Qiang Shang & Yang Yu & Tian Xie, 2022. "A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    17. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    18. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    19. Pan, Yingjiu & Chen, Shuyan & Niu, Shifeng & Ma, Yongfeng & Tang, Kun, 2020. "Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity," Journal of Transport Geography, Elsevier, vol. 83(C).
    20. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2021. "Average density estimation for urban traffic networks: Application to the Grenoble network," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 21-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.