IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0214937.html
   My bibliography  Save this article

Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging

Author

Listed:
  • Zhiying Long
  • Yubao Wang
  • Xuanping Liu
  • Li Yao

Abstract

Multivariate analysis methods have been widely applied to decode brain states from functional magnetic resonance imaging (fMRI) data. Among various multivariate analysis methods, partial least squares regression (PLSR) is often used to select relevant features for decoding brain states. However, PLSR is seldom directly used as a classifier to decode brain states from fMRI data. It is unclear how PLSR classifiers perform in brain-state decoding using fMRI. In this study, we propose two types of two-step PLSR classifiers that use PLSR/sparse PLSR (SPLSR) to select features and PLSR for classification to improve the performance of the PLSR classifier. The results of simulated and real fMRI data demonstrated that the PLSR classifier using PLSR/SPLSR to select features outperformed both the PLSR classifier using a general linear model (GLM) and the support vector machine (SVM) using PLSR/SPLSR/GLM in most cases. Moreover, PLSR using SPLSR to select features showed the best performance among all of the methods. Compared to GLM, PLSR is more sensitive in selecting the voxels that are specific to each task. The results suggest that the performance of the PLSR classifier can be largely improved when the PLSR classifier is combined with the feature selection methods of SPLSR and PLSR.

Suggested Citation

  • Zhiying Long & Yubao Wang & Xuanping Liu & Li Yao, 2019. "Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0214937
    DOI: 10.1371/journal.pone.0214937
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214937
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214937&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0214937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
    2. Stephenie A. Harrison & Frank Tong, 2009. "Decoding reveals the contents of visual working memory in early visual areas," Nature, Nature, vol. 458(7238), pages 632-635, April.
    3. Sutao Song & Zhichao Zhan & Zhiying Long & Jiacai Zhang & Li Yao, 2011. "Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadine Dijkstra & Stephen M. Fleming, 2023. "Subjective signal strength distinguishes reality from imagination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
    3. Duncan Edward Astle & Anna Christina Nobre & Gaia Scerif, 2009. "Applying an Attentional Set to Perceived and Remembered Features," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-12, October.
    4. Kay H Brodersen & Thomas M Schofield & Alexander P Leff & Cheng Soon Ong & Ekaterina I Lomakina & Joachim M Buhmann & Klaas E Stephan, 2011. "Generative Embedding for Model-Based Classification of fMRI Data," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-19, June.
    5. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    6. Skripnikov, A. & Michailidis, G., 2019. "Regularized joint estimation of related vector autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 164-177.
    7. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    8. Li, An-Da & He, Zhen & Wang, Qing & Zhang, Yang, 2019. "Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method," European Journal of Operational Research, Elsevier, vol. 274(3), pages 978-989.
    9. Serra E. Favila & Brice A. Kuhl & Jonathan Winawer, 2022. "Perception and memory have distinct spatial tuning properties in human visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Juan Linde-Domingo & Bernhard Spitzer, 2024. "Geometry of visuospatial working memory information in miniature gaze patterns," Nature Human Behaviour, Nature, vol. 8(2), pages 336-348, February.
    11. Kai Ueltzhöffer & Diana J N Armbruster-Genç & Christian J Fiebach, 2015. "Stochastic Dynamics Underlying Cognitive Stability and Flexibility," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-46, June.
    12. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    13. Danial Jahed Armaghani & Panagiotis G. Asteris & Behnam Askarian & Mahdi Hasanipanah & Reza Tarinejad & Van Van Huynh, 2020. "Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness," Sustainability, MDPI, vol. 12(6), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0214937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.