IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2913-d1481177.html
   My bibliography  Save this article

A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis

Author

Listed:
  • Qiang Deng

    (Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China)

Abstract

This study introduces a novel approach to enhance variable selection in Data Envelopment Analysis (DEA), especially in stochastic environments where efficiency estimation is inherently complex. To address these challenges, we propose a game cross-DEA model to refine efficiency estimation. Additionally, we integrate the Akaike Information Criterion (AIC) with the Optimal Computing Budget Allocation (OCBA) technique, creating a hybrid method named OCBA–AIC. This innovative method efficiently allocates computational resources for stochastic variable selection. Our numerical analysis indicates that OCBA–AIC surpasses existing methods, achieving a lower AIC value. We also present two real-world case studies that demonstrate the effectiveness of our approach in ranking suppliers and tourism companies under uncertainty by selecting the most suitable partners. This research enriches the understanding of efficiency measurement in DEA and makes a substantial contribution to the field of performance management and decision-making in stochastic contexts.

Suggested Citation

  • Qiang Deng, 2024. "A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis," Mathematics, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2913-:d:1481177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
    2. Yang, Feng & Ang, Sheng & Xia, Qiong & Yang, Chenchen, 2012. "Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis," European Journal of Operational Research, Elsevier, vol. 223(2), pages 483-488.
    3. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    4. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    5. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    6. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    9. R G Dyson & E A Shale, 2010. "Data envelopment analysis, operational research and uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 25-34, January.
    10. Wagner, Janet M. & Shimshak, Daniel G., 2007. "Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives," European Journal of Operational Research, Elsevier, vol. 180(1), pages 57-67, July.
    11. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    12. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    13. Qiang Deng & Zhaotong Lian & Qi Fu, 2021. "A novel method of variable selection in data envelopment analysis with entropy measures," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 41(4), pages 514-534.
    14. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    15. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    16. Duras, Toni & Javed, Farrukh & Månsson, Kristofer & Sjölander, Pär & Söderberg, Magnus, 2023. "Using machine learning to select variables in data envelopment analysis: Simulations and application using electricity distribution data," Energy Economics, Elsevier, vol. 120(C).
    17. Liang Liang & Jie Wu & Wade D. Cook & Joe Zhu, 2008. "The DEA Game Cross-Efficiency Model and Its Nash Equilibrium," Operations Research, INFORMS, vol. 56(5), pages 1278-1288, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    3. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    4. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    5. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    6. Anna Łozowicka & Bartłomiej Lach, 2022. "CI-DEA: A Way to Improve the Discriminatory Power of DEA—Using the Example of the Efficiency Assessment of the Digitalization in the Life of the Generation 50+," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    7. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    8. Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
    9. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    10. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    11. Qiwei Xie & Yuanyuan Li & Lizheng Wang & Chao Liu, 2018. "Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1053-1068, December.
    12. Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
    13. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    14. Bojiang Yang & Youliang Zhang & Hongjun Zhang & Rui Zhang & Baoyu Xu, 2016. "Factor-specific Malmquist productivity index based on common weights DEA," Operational Research, Springer, vol. 16(1), pages 51-70, April.
    15. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    16. Benítez-Peña, Sandra & Bogetoft, Peter & Romero Morales, Dolores, 2020. "Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach," Omega, Elsevier, vol. 96(C).
    17. García-Alonso, Carlos R. & Salvador-Carulla, Luis & Fernández-Rodríguez, Vicente, 2015. "Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areasAuthor-Name: Torres-Jiménez, Mercedes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 525-535.
    18. Yu Yu & Weiwei Zhu & Qian Zhang, 2019. "DEA cross-efficiency evaluation and ranking method based on interval data," Annals of Operations Research, Springer, vol. 278(1), pages 159-175, July.
    19. Shiang-Tai Liu, 2018. "A DEA ranking method based on cross-efficiency intervals and signal-to-noise ratio," Annals of Operations Research, Springer, vol. 261(1), pages 207-232, February.
    20. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2021. "Selecting data envelopment analysis models: A data-driven application to EU countries," Omega, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2913-:d:1481177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.