IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2229-d331844.html
   My bibliography  Save this article

Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness

Author

Listed:
  • Danial Jahed Armaghani

    (Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam)

  • Panagiotis G. Asteris

    (Computational Mechanics Laboratory, School of Pedagogical and Technological Education, 14121 Heraklion, Athens, Greece)

  • Behnam Askarian

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

  • Mahdi Hasanipanah

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Reza Tarinejad

    (Department of Civil Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz 51666, Iran)

  • Van Van Huynh

    (Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam)

Abstract

The aim of this study was twofold: (1) to assess the performance accuracy of support vector machine (SVM) models with different kernels to predict rock brittleness and (2) compare the inputs’ importance in different SVM models. To this end, the authors developed eight SVM models with different kernel types, i.e., the radial basis function (RBF), the linear (LIN), the sigmoid (SIG), and the polynomial (POL). Four of these models were developed using only the SVM method, while the four other models were hybridized with a feature selection (FS) technique. The performance of each model was assessed using five performance indices and a simple ranking system. The results of this study show that the SVM models developed using the RBF kernel achieved the highest ranking values among single and hybrid models. Concerning the importance of variables for predicting the brittleness index (BI), the Schmidt hammer rebound number (R n ) was identified as the most important variable by the three single-based models, developed by POL, SIG, and LIN kernels. However, the single SVM model developed by RBF identified density as the most important input variable. Concerning the hybrid SVM models, three models that were developed using the RBF, POL, and SIG kernels identified the point load strength index as the most important input, while the model developed using the LIN identified the R n as the most important input. All four single-based SVM models identified the p-wave velocity (V p ) as the least important input. Concerning the least important factors for predicting the BI of the rock in hybrid-based models, V p was identified as the least important factor by FS-SVM-POL, FS-SVM-SIG, and FS-SVM-LIN, while the FS-SVM-RBF identified R n as the least important input.

Suggested Citation

  • Danial Jahed Armaghani & Panagiotis G. Asteris & Behnam Askarian & Mahdi Hasanipanah & Reza Tarinejad & Van Van Huynh, 2020. "Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2229-:d:331844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    2. Dong Van Dao & Hojjat Adeli & Hai-Bang Ly & Lu Minh Le & Vuong Minh Le & Tien-Thinh Le & Binh Thai Pham, 2020. "A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    3. Raghu Garg & Himanshu Aggarwal & Piera Centobelli & Roberto Cerchione, 2019. "Extracting Knowledge from Big Data for Sustainability: A Comparison of Machine Learning Techniques," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    4. Ahmed Gowida & Salaheldin Elkatatny & Saad Al-Afnan & Abdulazeez Abdulraheem, 2020. "New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    5. Sutao Song & Zhichao Zhan & Zhiying Long & Jiacai Zhang & Li Yao, 2011. "Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    2. Chia Yu Huat & Seyed Mohammad Hossein Moosavi & Ahmed Salih Mohammed & Danial Jahed Armaghani & Dmitrii Vladimirovich Ulrikh & Masoud Monjezi & Sai Hin Lai, 2021. "Factors Influencing Pile Friction Bearing Capacity: Proposing a Novel Procedure Based on Gradient Boosted Tree Technique," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    3. Zhi-Hua Xu & Guang-Liang Feng & Qian-Cheng Sun & Guo-Dong Zhang & Yu-Ming He, 2020. "A Modified Model for Predicting the Strength of Drying-Wetting Cycled Sandstone Based on the P-Wave Velocity," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    4. Hai-Bang Ly & Tien-Thinh Le & Huong-Lan Thi Vu & Van Quan Tran & Lu Minh Le & Binh Thai Pham, 2020. "Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams," Sustainability, MDPI, vol. 12(7), pages 1-34, March.
    5. Yuanyuan Shi & Junyu Zhao & Xianchong Song & Zuoyu Qin & Lichao Wu & Huili Wang & Jian Tang, 2021. "Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-15, June.
    6. Qinghe Zhao & Zifang Zhang & Yuchen Huang & Junlong Fang, 2022. "TPE-RBF-SVM Model for Soybean Categories Recognition in Selected Hyperspectral Bands Based on Extreme Gradient Boosting Feature Importance Values," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    7. Hu Li & Qianen Xu & Yang Liu, 2021. "Method for Diagnosing the Uneven Settlement of a Rail Transit Tunnel Based on the Spatial Correlation of High-Density Strain Measurement Points," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    8. Qun Yu & Masoud Monjezi & Ahmed Salih Mohammed & Hesam Dehghani & Danial Jahed Armaghani & Dmitrii Vladimirovich Ulrikh, 2021. "Optimized Support Vector Machines Combined with Evolutionary Random Forest for Prediction of Back-Break Caused by Blasting Operation," Sustainability, MDPI, vol. 13(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    2. Zongguo Zhang & Xianyang Qiu & Xiuzhi Shi & Zhi Yu, 2023. "Chamber roof deformation prediction and analysis of underground mining using experimental design methodologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 757-777, January.
    3. Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
    4. Chao Chen & Jian Zhou & Tao Zhou & Weixun Yong, 2021. "Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1457-1479, November.
    5. Hyun-Jun Choi & Sewon Kim & YoungSeok Kim & Jongmuk Won, 2022. "Predicting Frost Depth of Soils in South Korea Using Machine Learning Techniques," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    6. Hai-Bang Ly & Tien-Thinh Le & Huong-Lan Thi Vu & Van Quan Tran & Lu Minh Le & Binh Thai Pham, 2020. "Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams," Sustainability, MDPI, vol. 12(7), pages 1-34, March.
    7. Jyh-Woei Lin, 2022. "Generalized two-dimensional principal component analysis and two artificial neural network models to detect traveling ionospheric disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1245-1270, March.
    8. Xiaobo Xue Romeiko & Zhijian Guo & Yulei Pang & Eun Kyung Lee & Xuesong Zhang, 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    9. Muhammad Ali & Naseer Muhammad Khan & Qiangqiang Gao & Kewang Cao & Danial Jahed Armaghani & Saad S. Alarifi & Hafeezur Rehman & Izhar Mithal Jiskani, 2023. "Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristics: Insight Experimental and Artificial Intelligence Approaches," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    10. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    11. Skripnikov, A. & Michailidis, G., 2019. "Regularized joint estimation of related vector autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 164-177.
    12. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    13. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    14. Shinyoung Kwag & Daegi Hahm & Minkyu Kim & Seunghyun Eem, 2020. "Development of a Probabilistic Seismic Performance Assessment Model of Slope Using Machine Learning Methods," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    15. Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    16. Anthony Cawley & Kevin Heanue & Rachel Hilliard & Cathal O’Donoghue & Maura Sheehan, 2023. "How Knowledge Transfer Impact Happens at the Farm Level: Insights from Advisers and Farmers in the Irish Agricultural Sector," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    17. Mohamed Derbeli & Cristian Napole & Oscar Barambones, 2021. "Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    18. Zhiying Long & Yubao Wang & Xuanping Liu & Li Yao, 2019. "Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    19. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    20. João R. B. Paiva & Alana S. Magalhães & Pedro H. F. Moraes & Júnio S. Bulhões & Wesley P. Calixto, 2021. "Stability Metric Based on Sensitivity Analysis Applied to Electrical Repowering System," Energies, MDPI, vol. 14(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2229-:d:331844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.