IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p89-d1560425.html
   My bibliography  Save this article

Study on Intelligent Classing of Public Welfare Forestland in Kunyu City

Author

Listed:
  • Meng Sha

    (The College of Forestry, Beijing Forestry University, 35 Tsinghua East Rd., Beijing 100083, China)

  • Hua Yang

    (The College of Forestry, Beijing Forestry University, 35 Tsinghua East Rd., Beijing 100083, China)

  • Jianwei Wu

    (Survey Planning and Design Institute, State Forestry and Grassland Administration, Beijing 100714, China)

  • Jianning Qi

    (Survey Planning and Design Institute, State Forestry and Grassland Administration, Beijing 100714, China)

Abstract

Manual forestland classification methods, which rely on predetermined scoring criteria and subjective interpretation, are commonly used but suffer from limitations such as high labor costs, complexity, and lack of scalability. This study proposes an innovative machine learning-based approach to forestland classification, utilizing a Support Vector Machine (SVM) model to automate the classification process and enhance both efficiency and accuracy. The main contributions of this work are as follows: A machine learning model was developed using integrated data from the Third National Land Survey of China, including forestry, grassland, and wetland datasets. Unlike previous approaches, the SVM model is optimized with Grid Search (GS), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) to automatically determine classification parameters, overcoming the limitations of manual rule-based methods. The performance of the SVM model was evaluated using confusion matrices, classification accuracy, and Matthews Correlation Coefficient (MCC). A comprehensive comparison under different optimization techniques revealed significant improvements in classification accuracy and generalization ability over manual classification systems. The experimental results demonstrated that the GA-SVM model achieved classification accuracies of 98.83% (test set) and 99.65% (overall sample), with MCC values of 0.9796 and 0.990, respectively, outpacing other optimization algorithms, including Grid Search (GS) and Particle Swarm Optimization (PSO). The GA-SVM model was applied to classify public welfare forestland in Kunyu City, yielding detailed classifications across various forestland categories. This result provides a more efficient and accurate method for large-scale forestland management, with significant implications for future land use assessments. The findings underscore the advantages of the GA-SVM model in forestland classification: it is efficient, accurate, and easy to operate. This study not only presents a more reliable alternative to conventional rule-based and manual scoring methods but also sets a precedent for using machine learning to automate and optimize forestland classification in future applications.

Suggested Citation

  • Meng Sha & Hua Yang & Jianwei Wu & Jianning Qi, 2025. "Study on Intelligent Classing of Public Welfare Forestland in Kunyu City," Land, MDPI, vol. 14(1), pages 1-15, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:89-:d:1560425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sutao Song & Zhichao Zhan & Zhiying Long & Jiacai Zhang & Li Yao, 2011. "Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
    2. Skripnikov, A. & Michailidis, G., 2019. "Regularized joint estimation of related vector autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 164-177.
    3. Maelaynayn El baida & Farid Boushaba & Mimoun Chourak & Mohamed Hosni & Hichame Sabar, 2024. "Classification machine learning models for urban flood hazard mapping: case study of Zaio, NE Morocco," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10013-10041, September.
    4. Zhiying Long & Yubao Wang & Xuanping Liu & Li Yao, 2019. "Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    5. Danial Jahed Armaghani & Panagiotis G. Asteris & Behnam Askarian & Mahdi Hasanipanah & Reza Tarinejad & Van Van Huynh, 2020. "Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness," Sustainability, MDPI, vol. 12(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:89-:d:1560425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.