IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004331.html
   My bibliography  Save this article

Stochastic Dynamics Underlying Cognitive Stability and Flexibility

Author

Listed:
  • Kai Ueltzhöffer
  • Diana J N Armbruster-Genç
  • Christian J Fiebach

Abstract

Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences.Author Summary: In this work we develop a neurophysiologically inspired dynamical model that is capable of solving a complex behavioral task testing cognitive stability and flexibility. We can individually fit the behavior of each of 20 human subjects that conducted this stability-flexibility task during functional magnetic resonance imaging (fMRI). The physiological nature of our model allows us to estimate the energy consumption of the rule-representing module, which we use to predict the hemodynamic fMRI response. Through this model-based prediction, we localize the rule module to a frontoparietal network known to be required for cognitive stability and flexibility. In this way we both validate our model, which is based on noisy attractor dynamics, and specify the computational role of a cortical network that is well-established in human neuroimaging research. Additionally, we quantify the individual stability of the rule-representing states and relate this stability to individual differences in energy consumption during task switching versus distractor inhibition. Hereby we show that the activation of a thalamocorticostriatal network involved in the dopaminergic modulation of cognitive stability is modulated by the model-derived stability of the frontoparietal rule-representing network. Altogether, we show that noisy dynamic systems are likely to implement the basic computations underlying cognitive stability and flexibility.

Suggested Citation

  • Kai Ueltzhöffer & Diana J N Armbruster-Genç & Christian J Fiebach, 2015. "Stochastic Dynamics Underlying Cognitive Stability and Flexibility," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-46, June.
  • Handle: RePEc:plo:pcbi00:1004331
    DOI: 10.1371/journal.pcbi.1004331
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004331
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004331&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emili Balaguer-Ballester & Christopher C Lapish & Jeremy K Seamans & Daniel Durstewitz, 2011. "Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    2. Stephenie A. Harrison & Frank Tong, 2009. "Decoding reveals the contents of visual working memory in early visual areas," Nature, Nature, vol. 458(7238), pages 632-635, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadine Dijkstra & Stephen M. Fleming, 2023. "Subjective signal strength distinguishes reality from imagination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    3. Duncan Edward Astle & Anna Christina Nobre & Gaia Scerif, 2009. "Applying an Attentional Set to Perceived and Remembered Features," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-12, October.
    4. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Kay H Brodersen & Thomas M Schofield & Alexander P Leff & Cheng Soon Ong & Ekaterina I Lomakina & Joachim M Buhmann & Klaas E Stephan, 2011. "Generative Embedding for Model-Based Classification of fMRI Data," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-19, June.
    6. Serra E. Favila & Brice A. Kuhl & Jonathan Winawer, 2022. "Perception and memory have distinct spatial tuning properties in human visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    7. Juan Linde-Domingo & Bernhard Spitzer, 2024. "Geometry of visuospatial working memory information in miniature gaze patterns," Nature Human Behaviour, Nature, vol. 8(2), pages 336-348, February.
    8. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    9. Zhiying Long & Yubao Wang & Xuanping Liu & Li Yao, 2019. "Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.