IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0184062.html
   My bibliography  Save this article

An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios

Author

Listed:
  • Jennifer K Costanza
  • John W Coulston
  • David N Wear

Abstract

The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and identified the indicator and dominant species associated with each. Cluster typologies in two levels of a hierarchy of forest assemblages, with 29 and 147 groups respectively, were supported by diagnostic criteria. Groups in these two levels of the hierarchy were labeled based on the top indicator species in each, and ranged widely in size. For example, in the 29-cluster typology, the sugar maple-red maple assemblage contained the largest number of plots (30,068), while the butternut-sweet birch and sourwood-scarlet oak assemblages were both smallest (6 plots each). We provide a case-study demonstration of the utility of the typology for informing forest climate change impact assessment. For five assemblages in the 29-cluster typology, we used existing projections of changes in importance value (IV) for the dominant species under one low and one high climate change scenario to assess impacts to the assemblages. Results ranged widely for each scenario by the end of the century, with each showing an average decrease in IV for dominant species in some assemblages, including the balsam fir-quaking aspen assemblage, and an average increase for others, like the green ash-American elm assemblage. Future work should assess adaptive capacity of these forest assemblages and investigate local population- and community-level dynamics in places where dominant species may be impacted. This typology will be ideal for monitoring, assessing, and projecting changes to forest communities within the emerging framework of macrosystems ecology, which emphasizes hierarchies and broad extents.

Suggested Citation

  • Jennifer K Costanza & John W Coulston & David N Wear, 2017. "An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-24, September.
  • Handle: RePEc:plo:pone00:0184062
    DOI: 10.1371/journal.pone.0184062
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184062
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0184062&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0184062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. David García-Callejas & Ignasi Bartomeus & Oscar Godoy, 2021. "The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    5. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    7. Biswas, Dhrubajyoti & Gupta, Sayan, 2024. "Symmetry-breaking higher-order interactions in coupled phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    9. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Shengman Lyu & Jake M. Alexander, 2022. "Competition contributes to both warm and cool range edges," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Muhammad Awais Rasool & Muhammad Azher Hassan & Xiaobo Zhang & Qing Zeng & Yifei Jia & Li Wen & Guangchun Lei, 2021. "Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    12. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    13. Muyinda, Nathan & Baetens, Jan M. & De Baets, Bernard & Rao, Shodhan, 2020. "Using intransitive triads to determine final species richness of competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Shang, Yilun, 2022. "Sombor index and degree-related properties of simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    15. Jing Yang & Xiya Wang & Carlos P. Carmona & Xihua Wang & Guochun Shen, 2024. "Inverse relationship between species competitiveness and intraspecific trait variability may enable species coexistence in experimental seedling communities," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Papanikolaou, Nikos & Lambiotte, Renaud & Vaccario, Giacomo, 2023. "Fragmentation from group interactions: A higher-order adaptive voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    17. Singh, Arpit & Verma, Umesh Kumar & Mishra, Ajay & Yadav, Kiran & Sharma, Amit & Varshney, Vaibhav, 2024. "Higher-order-interaction in multiplex neuronal network with electric and synaptic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Chen, Shiliang & Liu, Xiang & He, Qiang & Zhou, Shurong, 2022. "Higher-order interactions on disease transmission can reverse the dilution effect or weaken the amplification effect to unimodal pattern," Ecological Modelling, Elsevier, vol. 474(C).
    20. Térence Legrand & Anne Chenuil & Enrico Ser-Giacomi & Sophie Arnaud-Haond & Nicolas Bierne & Vincent Rossi, 2022. "Spatial coalescent connectivity through multi-generation dispersal modelling predicts gene flow across marine phyla," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0184062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.