IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924004168.html
   My bibliography  Save this article

Higher-order-interaction in multiplex neuronal network with electric and synaptic coupling

Author

Listed:
  • Singh, Arpit
  • Verma, Umesh Kumar
  • Mishra, Ajay
  • Yadav, Kiran
  • Sharma, Amit
  • Varshney, Vaibhav

Abstract

We explore the emergence of various dynamic states within neurons interconnected in a multiplex setting with higher-order coupling. Using the Hindmarsh–Rose model as a representation of multiplex network dynamics, we examine scenarios where the primary layer is interacting through higher-order synaptic coupling while the secondary layer exhibits higher-order electric coupling. We examine the behavior of neurons within each layer individually and identify various emerging activity patterns, including synchronization, amplitude and oscillation death. When combining both layer through feedback mechanisms, we notice that the phenomenon of oscillation death shifts from the first layer to the second as the intralayer coupling intensifies. Multiplexing can also induces oscillation death in both the layers even when first layer is uncoupled. We also show that increasing the strength of synaptic coupling results in revival of oscillation in both the layers.

Suggested Citation

  • Singh, Arpit & Verma, Umesh Kumar & Mishra, Ajay & Yadav, Kiran & Sharma, Amit & Varshney, Vaibhav, 2024. "Higher-order-interaction in multiplex neuronal network with electric and synaptic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004168
    DOI: 10.1016/j.chaos.2024.114864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.