IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics096007792400273x.html
   My bibliography  Save this article

Symmetry-breaking higher-order interactions in coupled phase oscillators

Author

Listed:
  • Biswas, Dhrubajyoti
  • Gupta, Sayan

Abstract

This paper investigates the route to synchronization in an extension of the Kuramoto model, which incorporates higher order interactions and do not preserve rotational symmetry, resulting in interesting dynamical scenarios. Using the standard Kuramoto order parameter and the Ott–Antonsen ansatz, the transition points corresponding to different dynamical characteristics are identified and the extent of synchrony is quantified. These results indicate that the system exclusively undergoes explosive transitions and dynamical states are dependent on the mean natural frequency. Interestingly, for a certain range of parameter values, an unsteady yet partially synchronized state characterized by an oscillatory order parameter is observed. The analytical results are shown to agree well with the numerical simulations.

Suggested Citation

  • Biswas, Dhrubajyoti & Gupta, Sayan, 2024. "Symmetry-breaking higher-order interactions in coupled phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400273x
    DOI: 10.1016/j.chaos.2024.114721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400273X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Xu, Can & Zhai, Yun & Wu, Yonggang & Zheng, Zhigang & Guan, Shuguang, 2023. "Enhanced explosive synchronization in heterogeneous oscillator populations with higher-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Sharma, Amit, 2021. "Explosive synchronization through attractive-repulsive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    5. A. Pluchino & V. Latora & A. Rapisarda, 2006. "Compromise and synchronization in opinion dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 169-176, March.
    6. Karnatak, Rajat & Ramaswamy, Ram & Feudel, Ulrike, 2014. "Conjugate coupling in ecosystems: Cross-predation stabilizes food webs," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 48-57.
    7. G. Filatrella & A. H. Nielsen & N. F. Pedersen, 2008. "Analysis of a power grid using a Kuramoto-like model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 485-491, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Arpit & Verma, Umesh Kumar & Mishra, Ajay & Yadav, Kiran & Sharma, Amit & Varshney, Vaibhav, 2024. "Higher-order-interaction in multiplex neuronal network with electric and synaptic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Zhao, Nannan & Zhang, Xuexue, 2023. "Impact of higher-order interactions on amplitude death of coupled oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    4. Shang, Yilun, 2022. "Sombor index and degree-related properties of simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    5. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Yoon, Jisung & Park, Jinseo & Yun, Jinhyuk & Jung, Woo-Sung, 2023. "Quantifying knowledge synchronization with the network-driven approach," Journal of Informetrics, Elsevier, vol. 17(4).
    7. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Xu, Can & Zhai, Yun & Wu, Yonggang & Zheng, Zhigang & Guan, Shuguang, 2023. "Enhanced explosive synchronization in heterogeneous oscillator populations with higher-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    10. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Antonio Scala & Sakshi Pahwa & Caterina M. Scoglio, 2015. "Cascade failures and distributed generation in power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 27-35.
    12. Luo, Hao-jie & Xue, Yu & Huang, Mu-yang & Zhang, Qiang & Zhang, Kun, 2024. "Pattern and waves on 2D-Kuramoto model with many-body interactions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    13. Nguyen, Tung T. & Budzinski, Roberto C. & Pasini, Federico W. & Delabays, Robin & Mináč, Ján & Muller, Lyle E., 2023. "Broadcasting solutions on networked systems of phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    15. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Sharma, Amit & Rakshit, Biswambhar, 2022. "Dynamical robustness in presence of attractive-repulsive interactions," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    18. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Shengman Lyu & Jake M. Alexander, 2022. "Competition contributes to both warm and cool range edges," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Khramenkov, Vladislav & Dmitrichev, Aleksei & Nekorkin, Vladimir, 2021. "Partial stability criterion for a heterogeneous power grid with hub structures," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400273x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.