IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30013-3.html
   My bibliography  Save this article

Competition contributes to both warm and cool range edges

Author

Listed:
  • Shengman Lyu

    (ETH Zürich)

  • Jake M. Alexander

    (ETH Zürich)

Abstract

Competition plays an important role in shaping species’ spatial distributions. However, it remains unclear where and how competition regulates species’ range limits. In a field experiment with plants originating from low and high elevations and conducted across an elevation gradient in the Swiss Alps, we find that both lowland and highland species can better persist in the presence of competition within, rather than beyond, their elevation ranges. These findings suggest that competition helps set both lower and upper elevation range limits of these species. Furthermore, the reduced ability of pairs of lowland or highland species to coexist beyond their range edges is mainly driven by diminishing niche differences; changes in both niche differences and relative fitness differences drive weakening competitive dominance of lowland over highland species with increasing elevation. These results highlight the need to account for competitive interactions and investigate underlying coexistence mechanisms to understand current and future species distributions.

Suggested Citation

  • Shengman Lyu & Jake M. Alexander, 2022. "Competition contributes to both warm and cool range edges," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30013-3
    DOI: 10.1038/s41467-022-30013-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30013-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30013-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    2. Sabine B. Rumpf & Karl Hülber & Johannes Wessely & Wolfgang Willner & Dietmar Moser & Andreas Gattringer & Günther Klonner & Niklaus E. Zimmermann & Stefan Dullinger, 2019. "Extinction debts and colonization credits of non-forest plants in the European Alps," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Andrew J. Davis & Linda S. Jenkinson & John H. Lawton & Bryan Shorrocks & Simon Wood, 1998. "Making mistakes when predicting shifts in species range in response to global warming," Nature, Nature, vol. 391(6669), pages 783-786, February.
    4. Jake M. Alexander & Jeffrey M. Diez & Jonathan M. Levine, 2015. "Novel competitors shape species’ responses to climate change," Nature, Nature, vol. 525(7570), pages 515-518, September.
    5. Jonathan M. Levine & Janneke HilleRisLambers, 2009. "The importance of niches for the maintenance of species diversity," Nature, Nature, vol. 461(7261), pages 254-257, September.
    6. Ignacio M. Pérez-Ramos & Luis Matías & Lorena Gómez-Aparicio & Óscar Godoy, 2019. "Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. W. Stanley Harpole & David Tilman, 2007. "Grassland species loss resulting from reduced niche dimension," Nature, Nature, vol. 446(7137), pages 791-793, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steen, Bart & Broennimann, Olivier & Maiorano, Luigi & Guisan, Antoine, 2024. "How sensitive are species distribution models to different background point selection strategies? A test with species at various equilibrium levels," Ecological Modelling, Elsevier, vol. 493(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David García-Callejas & Ignasi Bartomeus & Oscar Godoy, 2021. "The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Dandan Liu & Anmin Huang & Dewei Yang & Jianyi Lin & Jiahui Liu, 2021. "Niche-Driven Socio-Environmental Linkages and Regional Sustainable Development," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    4. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    5. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    6. Ilaria Bernabò & Viviana Cittadino & Sandro Tripepi & Vittoria Marchianò & Sandro Piazzini & Maurizio Biondi & Mattia Iannella, 2022. "Updating Distribution, Ecology, and Hotspots for Three Amphibian Species to Set Conservation Priorities in a European Glacial Refugium," Land, MDPI, vol. 11(8), pages 1-19, August.
    7. Sergey Bartsev & Andrey Degermendzhi, 2023. "The Evolutionary Mechanism of Formation of Biosphere Closure," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    8. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Barlett, Trinidad Ruiz & Laguna, María Fabiana & Abramson, Guillermo & Monjeau, Adrian & Martin, Gabriel, 2024. "A new distributional model coupling environmental and biotic factors," Ecological Modelling, Elsevier, vol. 489(C).
    11. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    12. Choden, Kunzang & Nitschke, Craig R. & Stewart, Stephen B. & Keenan, Rodney J., 2021. "The potential impacts of climate change on the distribution of key tree species and Cordyceps in Bhutan: Implications for ecological functions and rural livelihoods," Ecological Modelling, Elsevier, vol. 455(C).
    13. Jennifer K Costanza & John W Coulston & David N Wear, 2017. "An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-24, September.
    14. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    15. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    16. Trnka, M. & Muška, F. & Semerádová, D. & Dubrovský, M. & Kocmánková, E. & Žalud, Z., 2007. "European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate," Ecological Modelling, Elsevier, vol. 207(2), pages 61-84.
    17. Rocio Santiago & Monica Cristina Martins & Tais Nascimento & Luis Filipe de Barros & Matheus Vilaca & Emerson Peter Falcão & Nicacio Henriques da Silva & Maria Estrella Legaz & Carlos Vicente & Eugen, 2021. "Production of Bioactive Lichen Compounds by Alginate-Immobilized Bionts Isolated from Cladonia verticillaris: An in Vitro Study," Journal of Plant Studies, Canadian Center of Science and Education, vol. 9(1), pages 1-43, December.
    18. Mohd, Mohd Hafiz, 2019. "Diversity in interaction strength promotes rich dynamical behaviours in a three-species ecological system," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 243-253.
    19. Zdeněk Laštůvka, 2009. "Climate change and its possible influence on the occurrence and importance of insect pests," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 53-62.
    20. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30013-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.