IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v470y2024ics0096300324000468.html
   My bibliography  Save this article

The effect of intraspecific cooperation in a three-species cyclic predator-prey model

Author

Listed:
  • Dai, Hui
  • Wang, Xiaoyue
  • Lu, Yikang
  • Hou, Yunxiang
  • Shi, Lei

Abstract

The maintenance of biological diversity has perpetually remained a central focus in the field of ecology. In the pursuit of enhanced survival rates, species have begun to explore cooperation with one another. However, the consequences of such collaboration remain largely unexplored. To delve into this matter, we introduce intraspecific cooperation within the framework of the classic rock-paper-scissors (RPS) game. In this model, the competition rate is intricately tied to interactions among individuals of the same species. A greater population of individuals from the same species tends to lead to an increased predation rate and a decreased prey rate. Through extensive simulations, we observe that (i) in the case of homogeneous intraspecific cooperation (all three species have intraspecific cooperation), increased cooperation between predators tends to increase the likelihood of species coexistence. In contrast, high levels of cooperation between prey appeared to decrease the favorability of species coexistence. Measurements of the characteristic length of spiral structures revealed that the characteristic length of spirals became longer when the intensity of prey cooperation increased. (ii) In the case of heterogeneous intraspecific cooperation (two species or only one species with intraspecific cooperation), neither an increase in the intensity of intraspecific cooperation of the predator nor an increase in the intensity of intraspecific cooperation of the prey is favorable for species coexistence. Our work underscores the critical role of intraspecific cooperation in maintaining biodiversity.

Suggested Citation

  • Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000468
    DOI: 10.1016/j.amc.2024.128574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324000468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    2. Jacopo Grilli & György Barabás & Matthew J. Michalska-Smith & Stefano Allesina, 2017. "Higher-order interactions stabilize dynamics in competitive network models," Nature, Nature, vol. 548(7666), pages 210-213, August.
    3. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    4. Szolnoki, Attila & Perc, Matjaž, 2023. "Oppressed species can form a winning pair in a multi-species ecosystem," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    5. Zou, Rongcheng & Duan, Xiaofang & Han, Zhen & Lu, Yikang & Ma, Kewei, 2023. "What information sources can prevent the epidemic: Local information or kin information?," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    7. Guy Beauchamp, 2008. "What is the magnitude of the group-size effect on vigilance?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 19(6), pages 1361-1368.
    8. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    9. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Stacey Butler & James P. O’Dwyer, 2018. "Stability criteria for complex microbial communities," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    11. Zhu, Zhewen & Dong, Yuting & Lu, Yikang & Shi, Lei, 2021. "Information exchange promotes and jeopardizes cooperation on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    12. Zou, R. & Deng, Z. & Lu, Y. & Hu, J. & Han, Z., 2021. "Study of spreading phenomenon in network population considering heterogeneous property," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    13. Bazeia, D. & de Oliveira, B.F. & Silva, J.V.O. & Szolnoki, A., 2020. "Breaking unidirectional invasions jeopardizes biodiversity in spatial May-Leonard systems," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    3. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Jiang, Bei & Yuan, Lin & Zou, Rongcheng & Su, Rui & Mi, Yuqiang, 2023. "The effect of migration on vaccination dilemma in networked populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    12. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    13. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    16. Zhong, Linwu & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Species coexistence in spatial cyclic game of five species," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Yin, Lu & Lu, YiKang & Du, ChunPeng & Shi, Lei, 2022. "Effect of vaccine efficacy on disease transmission with age-structured," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    18. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Verma, Tina & Gupta, Arvind Kumar, 2021. "Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.